Operational Use of Taser
by Authorised Firearms Officers

Policy
Operational Use of Taser

Policy

1 PURPOSE

1.1 The Home Secretary has authorised the use of Taser by firearms officers.

1.2 This document sets out policy for the operational use of Taser.

2 BACKGROUND

2.1 In light of the Human Rights' Act the need for a range of 'less lethal' options, and personal safety tactical options in conflict management by police, has become an imperative for the service. Police are required to justify any use of force, showing that it was proportionate and legal, and that there was, at the time, an absolute necessity, particularly where potentially lethal force is used. Available less lethal technologies work in different ways and each may offer unique advantages in specific circumstances. The Association of Chief Police Officers (ACPO) believe that having a range of options available is likely to provide the most appropriate response to any given situation. This will include Conducted Energy Devices, HOSDB currently only authorise the Taser.

2.2 It has been demonstrated that where Taser has been used, it has contributed to the effective resolution of the incident. Taser is not a replacement for existing personal safety tactical options, but is an option that should be considered alongside others, such as negotiation, batons, incapacitant sprays, dogs and L104A1 launchers. These do not constitute a hierarchy of lawful force and should be viewed as a range of approved options from which the most proportionate and appropriate should be selected, according to circumstances, in order to meet the obligations set out in this document.

2.3 The Conflict Management Model, contained in the ACPO Personal Safety Manual of Guidance, sets out the process by which a measured and appropriate response can be made to any situation involving conflict. The police use of force is governed by:

- Common Law
- Section 3 Criminal Law Act 1967
- Section 117 Police and Criminal Evidence Act 1984
- The Human Rights Act 1998

2.4 Nothing in this policy overrides the fundamental duty of police officers to protect life in accordance with the law and the European Convention on Human Rights.

2.5 Taser technology has been subject to rigorous assessment and testing by the Home Office Scientific Development Branch (HOSDB) to determine how well it meets the operational requirement.
2.6 In addition, The Defence Science and Technology Laboratory (DSTL) have undertaken a thorough programme of medical assessment.

2.7 The results of these assessments have been considered by an independent body, the Defence Scientific Advisory Council’s Sub-Committee on the Medical Implications of 'less lethal' technologies (DOMILL), who have issued medical statements. (see appendix B)

3 SCOPE

3.1 DOMILL statements together with the findings from the operational usage thus far support this policy document and deployment.

3.2 ACPO considers that Taser may be issued alongside other existing personal safety tactical options. If justifiable and necessary it could be selected and used by trained officers facing violence or threats of violence of such severity that they will need to use force to protect the public, themselves and/or the subject(s).

4 OPERATIONAL AND TRAINING ISSUES

4.1 The intention is to provide Chief Officers, operational commanders and firearms officers with written guidance on the use of the equipment. The issue, deployment and use of Taser will conform to the well-established guidance already laid down in the ACPO Manual of Guidance on Police Use of Firearms and the ACPO Personal Safety Manual of Guidance.

4.2 The following principles will apply in respect to authority to deploy Taser:

- Taser will be deployed in circumstances where firearms officers are authorised to carry firearms, OR

 Where the authorising officer has reason to suppose that they, in the course of their duty, may have to protect the public, themselves and/or the subject(s) at incidents of violence or threats of violence of such severity that they will need to use force.

- Taser will be readily available.
- Once deployment as a Taser option has been authorised, to conflict management situations, usual supervision will apply, and the individual officer’s usage must be justifiable and compliant with all existing legislation and associated ACPO/Service guidelines.
- Due to the diverse nature of policing operations it is not possible to provide a definitive list of circumstances where the use of Taser would be appropriate. Operational guidance on police use has been written to inform and support decision making, stipulating training, deployment and use.

4.3 Officers will be trained in line with the above principles. The minimum contact time for initial training to complete the training module is 18 hours. There will follow a minimum 6 hours per annum refresher training.

4.4 Detailed instruction on the characteristics, operation and use of the Taser will be covered in the training and documentation provided to officers to be accredited in its use.

4.5 No individual will be voluntarily subjected to the effects of Taser under any circumstances.
4.6 Protection is provided to officers who use Taser, and those upon whom it is used, by the data recorded by the device on each occasion that it is discharged.

5 POST INCIDENT PROCEDURES

5.1 In any situations where the Taser is discharged, appropriate post incident procedures will be implemented depending on the nature of the injury or harm occasioned.

5.2 The term ‘use of the Taser’ will include any of the following actions carried out in an operational setting:

1. Drawing of a Taser in circumstances where any person perceives the action as a use of force.
2. Sparking of the Taser commonly known as “arching”.
3. Aiming of the Taser or placing the laser sight red dot onto a subject.
4. Firing of a Taser so that the barbs are discharged at a subject.
5. Application and Discharge of a Taser in “drive stun mode” to a subject.

5.3.1 Taser discharges are only required to be referred to the Independent Police Complaints Commission (IPCC) if the discharge:

- resulted in death or serious injury;
- caused danger to the public, or
- revealed failings in command.

5.4 This allows forces to refer discharges in other circumstances if they think it appropriate. This might include, for example, where Tasers are used outside current policy guidelines.

5.5 In the event of an unintentional discharge where there has been no danger to the public, this will be subject to an internal investigation.

5.6 Below is the minimum standard where possible of post incident evidence recovery. Forces should consider the availability of evidence collection equipment including cameras and appropriate packaging.
Cartridge
Including wires and probes to show complete and range used at. Not to be spooled.

AFIDs
Two or three to confirm serial number. These are spread randomly and will not show trajectory.

Photographs
Incident detail to show; scene, weapons involved / available to suspect, AFID / officer location, suspect locations, injuries to police / suspect, barbs location. Intention to tell as much of the incident in photographic detail as possible.

FME Report
Persons Tasered should be examined by FME

Taser Evaluation Form
Required for national records, forward to ACPO

Use of Force report
Required for national records.

Data-port Download
Print out of Taser use record

6 EVALUATION

6.1 The operational use of Taser will be monitored by the ACPO, HOSDB, DSTL and DOMILL.

6.2 Operational usage will be reviewed at regular intervals to ensure that emerging issues are properly reflected in training and operational guidance. Representatives of HOSDB, DSTL and DOMILL will be invited to contribute to the process.

6.3 Taser Evaluation Forms will be completed on every occasion where Taser is used in a policing operation. (See Appendix H)

6.4 Forces should appoint a Taser Liaison Officer as a single point of contact in each force who should receive all Taser Deployment forms prior to them being submitted centrally for evaluation. This individual will then be the conduit between the force and the representative from the Conflict Management Portfolio in terms of clarifying any information on the form.

REVIEW

7.1 This policy will be subject to regular review.
Operational Use of Taser
by Authorised Firearms Officers

Operational Guidance

Operational Use of Taser
by Authorised Firearms Officers
Notes for Guidance on Police Use

Operational Guidance Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>8-9</td>
</tr>
<tr>
<td>Introduction</td>
<td>9</td>
</tr>
<tr>
<td>Description of Equipment</td>
<td>9</td>
</tr>
<tr>
<td>Modes of Operation</td>
<td>9-10</td>
</tr>
<tr>
<td>Effects of the Taser</td>
<td>10</td>
</tr>
<tr>
<td>Issue/Possession</td>
<td>10-11</td>
</tr>
<tr>
<td>Possession outside Force Area</td>
<td>11</td>
</tr>
<tr>
<td>Specific Risk Factors</td>
<td>11-13</td>
</tr>
<tr>
<td>Training</td>
<td>13</td>
</tr>
<tr>
<td>Use</td>
<td>13-14</td>
</tr>
<tr>
<td>Oral and Visual warnings</td>
<td>14</td>
</tr>
<tr>
<td>Aftercare</td>
<td>14-15</td>
</tr>
<tr>
<td>Post Incident Procedures</td>
<td>16</td>
</tr>
<tr>
<td>Battery Maintenance</td>
<td>16</td>
</tr>
<tr>
<td>Dataport Auditing</td>
<td>16</td>
</tr>
<tr>
<td>Storage and Health and Safety</td>
<td>16-17</td>
</tr>
<tr>
<td>Appendix ‘A’.. Cross Border Protocols</td>
<td>18</td>
</tr>
<tr>
<td>Appendix ‘B’... Independent Medical Statements</td>
<td>19-39</td>
</tr>
<tr>
<td>Appendix ‘C’... Information sheet to subject/GP/Hospitals</td>
<td>40-43</td>
</tr>
<tr>
<td>Appendix ‘D’... Taser Battery Usage Form</td>
<td>44</td>
</tr>
<tr>
<td>Appendix ‘E’...M26 Taser Battery Recharging Form</td>
<td>45</td>
</tr>
<tr>
<td>Appendix ‘F’...Generic Risk Assessment</td>
<td>46-47</td>
</tr>
<tr>
<td>Appendix ‘G’.. Health and Safety Legislation</td>
<td>48</td>
</tr>
<tr>
<td>Appendix ‘H’...Evaluation Questionnaire</td>
<td>49</td>
</tr>
</tbody>
</table>
Preface

1.1 Managing conflict and responding to violence are core police functions. Police response is underpinned by Human Rights and in particular the obligation under Article 2 of the European Convention on Human Rights, to uphold the right to life.

1.2 This guidance is intended to inform the operational use of Taser. The use referred to in this document will be by authorised police firearms officers and will be subject to continued monitoring and regular review. Guidance for the use of any other approved Conducted Energy Device will need to be agreed by the ACPO, in consultation with HOSDB, DSTL and DOMILL.

1.3 The Secretary of State is supportive of the use of Taser by appropriately trained officers.

1.4 The use of Taser will be informed by reference to the ACPO Conflict Management Model, and is intended to provide Taser trained officers with an additional means of dealing with violence or threats of violence of such severity that it is likely that they will need to use force in order to protect the public, themselves and/or the subject(s). The availability or deployment of the Taser should not be considered as a replacement for conventional firearms should the relevant criteria for the issue of firearms be met.

Authorised Firearms Officers (AFOs) are, in accordance with the ACPO Manual of Guidance on Police Use of Firearms, issued with firearms – where the authorising officer has reason to suppose that they, in the course of their duty, may have to protect themselves or others from a person who is

• in possession of a firearm, or
• has immediate access to a firearm, or
• is otherwise so dangerous that the officer’s use of a firearm may be necessary
• for the humane destruction of animals which are dangerous or suffering unnecessarily

1.5 The police use of force is governed by:

• Common Law
• Section 3 Criminal Law Act 1967
• Section 117 Police and Criminal Evidence Act 1984
• The Human Rights Act 1998.

1.6 Article 2 of the UN Basic Principles on the use of Force and Firearms states that: ‘Governments and law enforcement agencies should develop a range of means as broad as possible and equip law enforcement officials with various types of weapons and ammunition that would allow for a differentiated use of force and firearms.’

1.7 The operational use of Taser is intended to provide firearms officers with a differentiated use of force.

1.8 The issue, deployment and use of the Taser will conform to the well-established guidance already laid down in the ACPO Manual of Guidance on Police Use of Firearms (the Manual). The following issues are therefore relevant:

• Taser will be deployed at the direction of a Conflict Management trained supervisor and the Taser officer will be subject to their usual line management. (A Taser officer does not have to be issued with conventional firearms.)
• The authorisation to deploy firearms will include the full range of conventional firearms and personal safety tactical options available to those officers.

• The post incident procedures set out in the Manual are specific to the use of conventional weapons.

• In situations where conventional firearms are not discharged, appropriate post incident procedures following the use of the Taser will be implemented depending on the nature of the injury or harm occasioned.

1.9 This guidance will be subject to regular review.

2 Introduction

2.1 The purpose of this guidance is to inform and support decision making in relation to training, deployment and use of the Taser.

2.2 The intention is to provide Chief Officers, operational commanders and firearms officers with written guidance on the use of the equipment.

2.3 Detailed instructions on the characteristics, operation and use of the Taser will be covered in the training and documentation provided to officers to be accredited in its use.

3 Description of equipment

3.1 The Taser is a single shot weapon designed to temporarily incapacitate a subject through the use of an electrical current, which temporarily interferes with the body’s neuromuscular system.

3.2 The Taser is laser-sighted and uses cartridges attached to the end of the cartridge bay. The cartridges project a pair of barbs or darts attached to insulated wires. The maximum range of the device is currently 21 feet (6.4 metres); this being the length of the wires that carry the current and attach the barbs to the weapon. It may also be used in a “drive stun” mode.

3.3 The device delivers a sequence of very high voltage pulses of very short duration through the wires.

3.4 The normal reaction of a person exposed to the discharge of the Taser is the loss of some voluntary muscle control resulting in the subject falling to the ground or ‘freezing’ on the spot. The device relies on physiological effects other than pain alone to achieve its objective, although pain is the main factor when it is used in ‘drive stun’ mode.

4 Modes of operation

4.1 The Taser may be operated with or without the cartridge that fires the wires and contact barbs. The electric charge can therefore be delivered to a subject either by:

• means of two barbs, attached to the weapon by fine insulated wires, discharged into the subject or their clothing, or

• direct contact with the device in ‘drive stun’ mode. This method of delivery can be achieved with either no cartridge fitted or when a discharged cartridge is still attached. To achieve a greater area of incapacitation, at close quarters, discharging a cartridge and drive stunning
at an alternative body site spreads the area of contact, this is referred to as “Angled Drive Stun”.

4.2 To be effective, the Taser power source must be sufficiently charged, the wires connecting the barbs to the Taser must be unbroken and both darts (or in ‘drive stun’ mode both electrodes) must attach to the subject’s body or clothing.

5 Effects of the Taser

5.1 In either mode the Taser delivers its electrical charge in a five-second cycle (which can be broken or repeated), but once the cycle ends or is broken, the direct incapacitation effect ceases.

5.2 In most cases this application will be sufficient to render a subject incapable of continuing an attack and is likely to result in the subject collapsing to the ground. The effect is not intended nor is it likely to render the subject into a state of unconsciousness.

5.3 Provided both barbs attach correctly, with sufficient spread, the effects are likely to be instantaneous. It should, however, be remembered that no incapacitating device, including firearms capable of discharging conventional ammunition, is universally effective and there may be individuals on whom the Taser may not be effective at all or only partially so.

5.4 The direct incapacitating effect is only likely to last for as long as the electrical charge is being delivered. The subject may recover immediately afterwards and could continue with their previous behaviour. It is therefore important that an incapacitated subject is approached and restrained quickly and effectively.

5.5 Whilst the 5 second cycle electrical charge can be repeated if the incapacitation effect does not occur, there may be technical or physiological reasons why the device is not working as expected on a particular individual.

6 Issue/Possession

6.1 The Taser will only be issued to authorised firearms officers who have successfully completed approved ACPO sponsored training in the use of the device.

6.2 Conducted Energy Devices are classified as ‘prohibited weapons’ by virtue of Sec. 5 Firearms Act 1968. Police officers whilst acting in their capacity as such, are exempt from the requirements of the legislation and do not need any additional legal authority to possess the Taser.

6.3 The Taser should not be regarded as a replacement for other issued “work equipment”, or for firearms capable of discharging conventional ammunition, but rather one of a number of personal safety tactical options. An officer may also need to resort to another option if the device does not have the effect intended.

6.4 In circumstances where authorised firearms officers have been deployed to a situation, the authorisation to utilise their firearm will also include the authority to use any other less lethal option or technology with which they have been issued including, where appropriate, the Taser.
6.5 It would be inappropriate for commanders or supervisory officers to attempt to restrict the deployment of an authorised firearms officer to a particular less lethal technology or personal safety tactical option.

6.6 The limited range and single shot capability of the Taser are constraining factors.

6.7 The Taser normally causes immediate incapacitation and its effect may also cause muscles to contract. This may result in immediate and involuntary clenching of the fingers and/or the arms rising uncontrollably. This potential reaction requires to be factored into any decision to utilise the Taser against a subject actually holding what is believed to be a firearm, as the application of the Taser may cause the subject to unintentionally and indiscriminately discharge the firearm. Additionally, it has been shown that it is possible, in certain circumstances, for some individuals to maintain enough control to aim and fire a weapon while under the effects of Taser.

6.8 However, if the weapon is merely close to hand the Taser may be useful in preventing the subject gaining access to the weapon.

7 Possession outside Force area

7.1 Firearms officers are on occasions deployed outside of their immediate Force area. Chief Officers will agree a protocol with neighbouring Forces (Appendix A) that enables officers equipped with the Taser to utilise the device should they be required to respond in a neighbouring Force area. Individual Chief Officers will remain vicariously liable in civil law for their own officers’ actions. Guidance for the use of the Taser, whether within or outside the Force area, is set out below.

8 Specific Risk Factors

8.1 The most recent DOMILL statement reference DSTL/BSC/27/01/07 dated 30 May 2007 identifies that children and adults of smaller stature as being at potentially greater risk from the cardiac effects of Taser currents than normal adults of average or large stature. DOMILL recommends that AFOs should be particularly vigilant for any Taser-induced adverse responses in this subset of the population.

8.2 Occasions will arise where it is necessary to use the Taser on a person who is exhibiting violent behaviour and who is also suffering from a mental disorder or illness. Where it is possible to discuss options with mental health professionals, this should be considered.

8.3 In pre-planned joint activities such discussions could form part of any briefing for the event. Consultation with friends, relatives etc. who are likely to know the person well may also assist in deciding on the most appropriate use of force response. Consultation with Health Authorities and Social Services in this respect will form part of the implementation plan. (See independent medical statements at Appendix ‘B’). The final decision to use the Taser in these circumstances will rest with the officer concerned.

8.4 Similarly where it becomes apparent that the subject has an existing medical condition or is under the influence of drugs, assessment of these additional risk factors should be made in determining the appropriate option.

8.5 Research by HOSDB has demonstrated that there is a risk of flammability if someone has already been sprayed with an incapacitant containing a flammable solvent. Clearly, there is
also a risk of flammability where the subjects’ clothing is doused with other flammable liquids. These might include, but are not limited to, lighter fuel, petrol and strong alcoholic spirits.

8.6 This heightened risk must be factored in when assessing the ‘appropriateness’ and ‘necessity’ of using a Taser. It is however recognised that there are circumstances where the only alternative may be the use of a potentially lethal firearm capable of discharging conventional ammunition, or where activation of the Taser irrespective of the additional risk is absolutely necessary to protect life.

8.7 Further risk has been identified from use of Taser in proximity to a number of explosive formulations, which are sensitive to electrical discharge. One such group is the ‘organic peroxide explosives’ such as HMTD and TATP. Items that produce an electrical discharge (such as Taser) will set off peroxide explosives and other sensitive explosives. Other explosive materials may also be sensitive to electrical discharge, depending on how the material is packaged, its age, storage conditions and other factors. The heightened risk, in relation to subjects who may be holding or in close proximity to an improvised explosive device, must also be factored in when assessing the ‘appropriateness’ and ‘necessity’ of using a Taser. The potential threat of the subject being able to initiate the improvised explosive device, should the use of the Taser be ineffective, must also be taken into account.

8.8 The Taser should not be utilised in an environment where, due to the presence of a flammable substance in the atmosphere or escaping gas, its use is likely to result in an even more hazardous situation.

8.9 The normal reaction of a person exposed to the discharge of a Taser is the loss of some voluntary muscle control resulting in the subject falling to the ground or ‘freezing’ on the spot. For this reason there is clearly a possibility of some secondary injury to the tasered subject, caused by falling and striking a hard surface. In this regard the risk of concussive brain injury as a result of the head hitting a rigid surface is considered especially pertinent. Particular attention should therefore be paid to the immediate environment and to assessing any additional risk factors. This issue will be particularly relevant where the subject is located at some height above the ground where there is increased risk from a fall.

8.10 Repeated, prolonged and/or continuous exposure to the Taser electrical discharge may cause strong muscle contractions that may impair breathing and respiration, particularly when the probes are placed across the chest or diaphragm. Users should avoid prolonged, extended, uninterrupted discharges or extensive multiple discharges whenever practicable in order to minimise the potential for over-exertion of the subject or potential impairment of full ability to breathe over a prolonged time period.

8.11 There is a specific risk of injury to the eye through penetration of a barb. Barb penetration in the neck or head may also increase the level of injury. For this reason the Taser should not be aimed so as to strike the head or neck of a subject unless this is wholly unavoidable. The laser sight should not intentionally be aimed at the eyes of the subject.

9 Training

9.1 The aims and objectives of training in the use of the Taser are contained in the Taser Training Modules.

9.2 Tactical training in the use of the Taser should emphasise precautions in relation to the specific risk factors contained in this guidance.
9.3 Authorised Firearms Officers are trained in conflict management and must be aware of the dangers associated with the conditions known as ‘positional asphyxia’ and ‘acute behavioural disorder’.

9.4 It is important that officers have an appreciation of the physical and psychological effects of conducted energy devices.

10 Use

10.1 Use of the Taser is one of a number of tactical options available to an officer who is faced with violence or the threat of violence. Its purpose is to temporarily incapacitate an individual in order to control and neutralise the threat that they pose. It must not be used to inflict severe pain or suffering on another in the performance or purported performance of official duties (The Criminal Justice Act 1988, s.134)

10.2 The duration of the initial discharge and any subsequent discharge must be proportionate, lawful, appropriate, necessary and non-discriminate, in all the circumstances. The decision to use the Taser is an individual one for which the officer will be accountable. The Conflict Management Model should assist officers in making such judgements.

10.3 Officers will carry out appropriate functions checks in accordance with their training whenever the weapon is issued.

10.4 When the Taser is discharged at a subject, a separation of the two barbs greater than 8" (200mm) is desirable in order to provide maximum incapacitation. This separation is achieved at a range of 5 feet (1.5 metres) or by use of angled “drive stun”. The separation of the barbs increases with range. It is also important that the barbs penetrate the subjects’ skin or at least attach onto their clothing, otherwise the circuit cannot be completed.

10.5 The Taser is sighted so that the top barb will strike in the area of the projected laser sight. It is acknowledged that there will be diminished accuracy and a fall off in trajectory at ranges in excess of 15 feet (4.6 metres). Ordinarily the Taser should be aimed to strike the body mass below the neck. Because of the specific risks previously highlighted (para 7.11) the Taser should not be aimed so as to strike the head or neck of a subject unless this is wholly unavoidable. The laser sight should not intentionally be aimed at the eyes of the subject.

10.6 In stun mode the Taser should be pressed directly to the subjects body. Unless absolutely necessary in order to protect life the Taser should not, due to increased risk factors, be applied directly to the subjects’ neck or head.

10.7 The risk of an officer receiving an electric shock whilst handling a subject who is being Tasered is low provided that the officer does not place any part of their body directly between the points of contact of the barbs on the subjects’ body.

10.8 The term 'use of the Taser' will include any of the following actions carried out in an operational setting:

1. Drawing of a Taser in circumstances where any person perceives the action as a use of force.

2. Sparking of the Taser commonly known as “arcing”.

3. Aiming of the Taser or placing the laser sight red dot onto a subject.
4. Firing of a Taser so that the barbs are discharged at a subject.

5. Application and Discharge of a Taser in "drive stun mode" to a subject.

10.9 An evaluation form (See Appendix ‘H’) is to be completed for every operation where Taser is used.

10.10 All forces should appoint a Taser Liaison Officer as a single point of contact in each force who should receive all Taser Deployment forms prior to them being submitted centrally for evaluation. This individual will then be the conduit between the force and the representative from the relevant ACPO Police Secretariat in terms of clarifying any information on the form.

11 Oral and Visual warnings

11.1 Where circumstances permit, officers should give a clear warning of their intent to use the Taser, giving sufficient time for the warnings to be observed, unless to do so would unduly place any person at risk, or would be clearly inappropriate or pointless in the circumstances of the incident.

11.2 It may in certain circumstances be appropriate to provide a visual display of the sparking effect of the unloaded Taser in order to induce compliance, thus avoiding the need to actually discharge the Taser at the subject.

11.3 The visual effect of the laser sight being directed at an individual may also have a deterrent effect. Officers should be aware that the pointing of a Taser at an individual represents a use of force and may in certain circumstances constitute an assault.

11.4 Police officers shall give the clear verbal warning ‘Taser, Taser’ indicating to all persons in the vicinity that Taser is being discharged.

12 Aftercare

12.1 Recovery from the direct effects of the Taser should be almost instantaneous, once the current has been turned off. After application of the Taser and once the subject has been properly restrained it is important that the officer provides verbal reassurance as to the temporary effects of the Taser and instructs the subject to breathe normally. This will aid recovery and mitigate against hyperventilation.

12.2 The barbs are designed to penetrate either the clothing or the skin. Injuries caused by Taser barbs penetrating the skin are normally minor.

12.3 Unless there is an operational necessity no attempt should be made by officers to remove the barbs which have penetrated the skin. This should only be done by a medical professional either at the scene, at a hospital or in the custody suite. This is principally because of the requirement for infection control, the potential for additional trauma to the skin and superficial tissues of the subject, and risk of self injury. Needles/barbs in particularly vulnerable areas, such as the eyes, should always be removed by medical staff only. In the event of there being an operational necessity, only officers trained in barb removal and the risks should carry out this procedure.

12.4 However, officers also have a duty of care in relation to the well-being of individuals under their control. Where it is evident that the barbs are attached to clothing (with no penetration of the
skin) they may be removed by gently pulling on the barbs. Care should be taken not to unnecessarily further damage the clothing.

12.5 Once the barbs are removed, they must be secured as evidence and any injury or damage noted. Barbs removed from the body should be considered as biohazards. It is important that suitable evidential containers are readily available. Once removed the barbs must be examined to ensure that they are complete.

12.6 Where officers are informed or come to believe that a person to whom the Taser had been applied has a cardiac pacemaker or other implanted device in place, immediate referral should be made to a hospital. Similarly, if the subject is found to have any other pre-existing medical condition that might lead to increased medical risk immediate referral to a hospital should be considered.

12.7 All arrested persons who have been subjected to the discharge of a Taser, must be examined by a Forensic Medical Examiner as soon as practicable. “All arrested persons who have been subjected to the discharge of a Taser must be examined by a Forensic Medical Examiner (FME) as soon as practicable. In instances where the detained person has sustained a head injury as a result of the secondary effect of the Taser discharge, the FME should use his or her clinical judgement, based on the degree of injury incurred, to decide whether hospital referral is warranted”. Particular attention should be given to detained persons who are known to have, or are suspected to be suffering from, diabetes, asthma, heart disease, epilepsy or any other condition (including alcohol and/or illicit drug intoxication) which may influence the individual’s fitness to be detained and which, in some cases, may warrant transfer to hospital. (Where an individual is detained under Section 136 of the Mental Health Act and conveyed direct to a hospital – this guidance must be brought to the attention of the doctor in charge of the Mental Health Unit at the hospital).

12.8 Close monitoring of a subject throughout the period following application of the Taser is of utmost importance. If the person is detained in a cell they should be subject to the same cell supervision provided for persons who have consumed alcohol or drugs. If there are any signs of adverse or unusual reactions then medical attention should be provided immediately and if necessary this must be given precedence over conveying the subject to the police station.

12.9 Experience from the use of Tasers in other countries, which is supported by medical assessment in the UK, has shown that the persons most likely to be at greatest risk from any harmful effects of the Taser device are those also suffering from the effects of drugs or who have been struggling violently. There are cases where such persons exposed to the effects of Taser have died some time after being exposed although the cause is unlikely to have been Taser itself. For this reason, such persons should be very closely monitored following exposure to the effects of the Taser. In addition, and as highlighted in other guidance, if there is any suspicion at all that the violent behaviour of any subject is being caused by Acute Behavioural Disorder; they should be treated as a medical emergency and conveyed directly to hospital.

12.10 At the earliest opportunity following arrival at the custody suite, any person who has been subjected to a Taser discharge should be given an information leaflet describing the Taser, its mode of operation and effects (See Appendix ‘C’). This should be fully explained and recorded on the custody record.

13 Post Incident Procedures
See Policy.

14 Battery Maintenance
14.1 Proper maintenance of the Taser M26 batteries is vitally important to the weapon’s operation. Guidance on this issue is included in maintenance forms for the device and batteries (see Appendices ‘D’ & ‘E’).

14.2 Function checks of the X26 should include checking the battery percentage left on the device. Battery (Digital Power Magazine - DPM) should be removed from operational use at 10%.

15 Dataport Auditing

15.1 An internal data logging system within the Taser records the details of the previous 585 activations on the M26, 1500 on the X26. This shows the exact time and date that the current was discharged. On the X26, the length of the discharge, temperature and battery condition is also shown. Details of activations can be downloaded via the dataport on to a computer.

15.2 Taser data should be downloaded on a regular basis. This information will be retained to provide an audit trail of the activation of each Taser.

16 Storage and Health and Safety

16.1 Health and Safety Legislation, in particular the Health and Safety at Work Act 1974 and the Management of the Health and Safety at Work Regulations 1999, and the legislation that extends this to the Police Service, the Police (Health and Safety) Act 1997 and Management of Health and Safety in the Police Regulations 1999, puts an onus on the employer (the force using the Taser) to carry out risk assessments and develop safe systems of work as part of an overall process to manage Health and Safety, both for the staff and members of the public, where a duty of care is owed.

16.2 A generic risk assessment covering the use of the Taser is attached at Appendix ‘F’. This should be considered a base document that individual forces can expand on to reflect the circumstances in which they intend to use the Taser. Subjects that need to be considered for an individual force’s specific risk assessment are likely to include storage and carriage arrangements and if there are any implications, with, for instance, existing equipment (e.g. Body Armour) and vehicles that the introduction of the Taser may affect.

16.3 One specific risk worth drawing attention to here is that electrical devices should not be stored alongside pyrotechnics, ammunition, specialist munitions or flammable products.

16.4 In addition, the manufacturer’s guidelines for storage of the Taser should be considered.

16.5 A comprehensive list of Health and Safety legislation that should be considered in developing safe systems of work is provided at Appendix ‘G’.
Association of Chief Police Officers – Operational Deployment of Taser

Cross Border Protocols

The current situation across the UK is that there are a number of Forces which have equipped officers with the Taser.

On borders of Forces, it is not uncommon for armed officers to cross boundaries when operationally necessary.

With the likelihood of mutual aid between Forces a cross border protocol is required in the deployment of the Taser.

It is clear that the Chief Constable of each Constabulary has a duty of care to their officers regardless of whether they are operating within their own Force boundaries or in adjacent Force areas.

In order to achieve a unified approach to this issue, the following draft protocol is proposed:

“It is agreed that the Chief Constable of a Constabulary has a duty of care to their officers, regardless of whether they are operating within their own or other force areas. It is agreed, therefore, that Forces will allow the carriage and operational use of the Taser, as per national guidance in line with the Conflict Management Model”

ACPO Conflict Management, September 2002
Appendix B

DSAC Sub-committee on the Medical Implications of Less-lethal Weapons (DOMILL)

Statement on a review of the first year of operational use of M26 and X26 Tasers by Specially Trained Units and Authorised Firearms Officers at incidents where firearms authority has not been granted.

Background

1. On 20th July 2007, the Home Secretary approved a one year trial by ten police forces of the use of M26 and X26 Tasers by Specially Trained Units (STUs) and Authorised Firearms Officers (AFOs) at incidents where firearms authority had not been granted.

2. The trial, which commenced on 1st September 2007, was an extension of the then extant policy (addressing use solely by AFOs within firearms authority) to operational deployment of Tasers outside this criterion at incidents involving violence, or threats of violence, of such severity that AFOs and STUs would need to use force to protect the public, themselves or the subject.

3. The statement prepared by DOMILL prior to the start of the trial1 recommended (at para. 17):

“In view of the uncertainties in the population characteristics of the increased numbers of subjects who are likely to be affected by the extended use of the Taser, it is essential that a quarterly review of Taser Evaluations Forms is undertaken by ACPO, DSTL and the Home Office. The acceptability of reversion to annual reporting should be assessed after the first year and DOMILL should be consulted. The Taser Evaluation Forms should identify under which policy authority the Taser was used.”

4. The present statement is DOMILL’s advice to Ministers on the appropriateness of its extant statement offered before the start of the trial, in the light of the ensuing operational audit. It is based on the evaluation outlined below and the continuing review by the Defence Science and Technology Laboratory (Dstl) and DOMILL of the medical research and operational data published worldwide on Taser use.

5. The Association of Chief Police Officers (ACPO) and the Home Office Scientific Development Branch (HOSDB) have employed a comprehensive Taser Evaluation Form to capture data from every use of Taser within Great Britain.2

Review of Taser Evaluation Forms

6. HOSDB provided DOMILL with timely quarterly reports and a final cumulative report summarising subject characteristics such as estimated age, height and build. Moderating factors such as intoxication and known or surmised pre-existing medical conditions were also noted. The reports also summarised details of the applications of the Tasers (probe location and number of applications) and injuries to subjects (primary, secondary and coincidental3) reported by the apprehending officers. These data were compiled separately for: (a) Taser use within firearms authority by AFOs, (b) Taser use outside firearms authority by AFOs, and (c) Taser use outside firearms authority by STUs. The Taser Evaluation Forms completed for each incident were made available to DOMILL and Dstl to address specific queries emerging from the

1 DSAC Sub-committee on the Medical Implications of Less-lethal Weapons (DOMILL). Statement on the medical implications of M26 and X26 Taser use at incidents where firearms authority has not been granted. DSTL/BSC/27/01/07 (dated 30 May 2007).
2 Use is classified as drawing or aiming the Taser, illuminating the subject with the sighting laser, arcing the Taser as a warning, applying the electrical output of the Taser to the subject via the propelled probes, or by direct application of the Taser probes to the individual (so-called drive-stun mode).
3 Primary injuries are those directly attributable to the application of the Taser currents; secondary are those physical injuries directly associated with Taser use (e.g. barb wounds and head injuries from falls); coincidental injuries are those not directly associated with Taser use (e.g. self-inflicted wounds).
compiled data. Forensic Medical Examiner (FME) forms, recording the in-custody clinical assessment of detained persons, were available for some of the incidents.

7. During the accounting period4, the Taser was used against a total of 1313 persons by AFOs and STUs outside of firearms authority. Within these uses, the Taser was fired (probes propelled) at 300 persons and used in drive-stun mode against 55 persons.

8. For AFOs deployed within an authorised firearms operation, the Taser was used against a total of 617 persons, with the device being fired at 222 persons and used in drive-stun mode against 16 persons.

9. In a minority of incidents, individuals were subjected to Taser discharge both via the propelled probes and by drive-stun (not necessarily simultaneously).

10. In the overwhelming majority of recorded incidents involving Taser use by AFOs and STUs during the trial, the X26 variant of the device was used.

11. There were no recorded incidents of serious adverse medical events attributable to Taser current application. Secondary injuries were principally the expected barb wounds or probe contact marks and minor injuries to the head and body from falls.

12. When all three categories of Taser use during the accounting period are considered together, the majority (93\%) of persons subjected to Taser discharge via propelled probes were male.

Use on persons under eighteen years of age

13. Applications of Taser to persons under the age of eighteen were reviewed in detail. For all three classes of use within the trial year, the Taser current was applied to twenty-four subjects under eighteen years-old. Thirteen were exposed to the fired probes only, seven to drive-stun application only, and four subjected to both. None of the incidents resulted in adverse medical outcomes attributable to the primary effects of the Taser. The secondary injuries were barb puncture wounds or drive-stun burn marks at the site of probe contact. There were no reported instances of head injury due to Taser-induced falls. In two cases, the top probe struck the neck.

Conclusions

14. The data reviewed by DOMILL for the current extended use trial and for earlier trials reinforce the Committee’s view that the risk of death or serious injury from use of the M26 and X26 Tasers within ACPO Guidance and Policy is very low. The risk, however, is not zero, as evidenced by two reported incidents in the United States in which the subjects sustained fatal head injuries as a result of Taser-induced falls. There are also insufficient data from use in the UK and elsewhere with which to evaluate any potential risks to the fetus in pregnant women.

15. DOMILL has reviewed the extant statement and considers that, on the evidence of the large number of Taser applications in the current trial, its conclusions are still appropriate.

4Although the accounting period covered Taser use over the period 20th July 2007 to 31st August 2008, the trial of Taser use by AFOs and STUs outside of firearms authority ran from 1st September 2007 to 31st August 2008.
Recommendations

16. The extant statement recommended that, in view of the uncertainties in the population characteristics of subjects who were likely to be affected by the extended use of the Taser, it was essential that quarterly reviews of the evaluation forms were undertaken. If the trial is extended in duration, or by involvement of more police forces using the Taser outside of firearms authority, DOMILL recommends that quarterly reviewing continues for one year, and the frequency of future reviews reconsidered subsequently.

17. DOMILL further recommends that ACPO Guidance on the Operational Use of Taser is amended to: (a) reinforce the need for prompt medical review and, if necessary, hospital referral, of individuals who have suffered head injury either as a result of Taser-induced falls or from other uses of force, and (b) re-emphasise the requirement for in-custody FME evaluation of all persons who have been subjected to Taser discharge, with particular attention given to detained persons who are known to have, or are suspected to be suffering from, diabetes, asthma, heart disease, epilepsy or any other condition (including alcohol and/or illicit drug intoxication) which may influence the individual’s fitness to be detained and which, in some cases, may warrant transfer to hospital.
DSAC Sub-committee on the Medical Implications of Less-lethal Weapons (DOMILL).

Statement on the medical implications of M26 and X26 Taser use at incidents where firearms authority has not been granted.

Background

1. The DSAC\(^5\) Sub-committee on the Medical Implications of Less-lethal Weapons (DOMILL) was requested by the Home Office to prepare this statement on the medical implications of the proposed extended use of M26 and X26 Tasers by Authorised Firearms Officers (AFOs) and by members of Specially Trained Units (STUs)\(^6\).

2. In 2003, a trial assessed the use of the M26 Taser as a less-lethal option alongside conventional firearms at incidents where firearms authority had been granted. The trial commenced in April 2003 and lasted for a period of 12 months. Prior to the commencement of the trial, DOMILL produced a statement for Ministers on the medical implications of the use of the M26 in this scenario\(^7\). Following independent evaluation, the Home Secretary authorised the M26 Taser for all police forces as a less-lethal option for police operations involving the deployment of AFOs with firearms authority.

3. DOMILL issued a second statement on the M26 Taser in July 2004\(^8\). This statement reviewed further research recommended by DOMILL and undertaken by the Defence Science and Technology Laboratory (DSTL). In March 2005, a third statement reviewed the medical implications of the use of the X26 Taser, a replacement for the M26 Taser\(^9\).

4. All statements to date have addressed use of the Taser solely by AFOs at incidents where firearms authority had been granted.

5. The Association of Chief Police Officers (ACPO) examined all uses of the Tasers and concluded that an extension would be appropriate to other conflict management situations where the criteria to authorise the issue of firearms were not met. A submission was presented to the Home Office seeking an extension to the operational deployment of Tasers outside the firearms criteria at incidents involving violence, or threats of violence, of such severity that officers would need to use force to protect the public, themselves or the subject.

6. It is proposed that two groups of police officers would be authorised to use Tasers in non-firearms incidents: AFOs and members of STUs. Policy and Guidance have been written for use of the Taser by each group at incidents involving violence, or threats of violence, of such severity that officers would need to use force outside firearms authority to control the situation.

7. This statement presents the view of DOMILL on the medical implications of the proposed extended Taser use and is based on the evidence presented to it by DSTL.

Technical approach

\(^1\) Defence Scientific Advisory Council – a non-departmental public body of the Ministry of Defence.
\(^2\) “Specially Trained Units” comprise police officers who are selected and trained in the use of Tasers at non-firearms incidents, within the relevant Policy and Guidance. The unit may or may not contain Authorised Firearms Officers.
8. DOMILL has reviewed:
 a. the two draft Policy and Guidance documents for AFOs and STUs;
 b. the scope of the Taser training modules for the STUs, and their alignment to those applicable to AFOs;
 c. advice from ACPO on the criteria for selection of officers for membership of the STUs;
 d. Taser Evaluation Forms and a small number of Forensic Medical Examiners’ (FME) reports for nearly all uses of Taser within the period April 2004 to December 2006;
 e. the medical risk factors declared in the Guidance;
 f. the medical advice notes to the subject, the subject’s general practitioner and to hospitals;
 g. a recent interim review by DSTL on the possibility of increased risks to the hearts of children and adults of small stature from the electrical currents flowing in the chest.

9. DOMILL has sought advice from ACPO on the likely population characteristics of those who may be subjected to Tasers at incidents where firearms authority would not be granted. ACPO advised that the proposed extension to use of the Taser is unlikely to alter the population make-up of those against whom the Taser is deployed. Specifically, ACPO does not anticipate that the proportion of children and persons under the influence of illicit drugs, alcohol or other intoxicants will change following implementation of extended use. It is likely that the numbers of people subjected to Taser will increase.

Conclusions

10. The new Policy, Guidance and training modules appear robust and, for both AFOs and members of STUs, they appear to provide a common foundation to minimise the potential for adverse medical effects from use of the M26 and X26 Tasers in non-firearms incidents.

11. The more frequent use of the Taser will result in a greater annual incidence of minor injuries and a greater, but still low, chance of a serious adverse event.

12. DOMILL anticipates that there will be an increase in the numbers of children subjected to Taser. DOMILL has reviewed ten cases of the exposure of persons under the age of eighteen to Taser currents in Great Britain up to December 2006, under firearms authority. The medical effects reported that could be attributed directly to the Taser were the expected minor wounds from the probe barbs.

13. There is very limited information globally on the relative vulnerability of children to Tasers, from either operational data or experimental studies on animals. However, data from McDaniel et al.10 on the reduction in the safety factor for initiation of a serious cardiac event (ventricular fibrillation) with a reduction in the body weight of pigs suggests, if extrapolated to humans, that the safety factor for induction of ventricular fibrillation by Taser discharge in children at the younger (i.e. smaller) range of the paediatric population may be lower compared with that in the adult population. Until more research is undertaken to clarify the vulnerability of children to Taser

currents, children and persons of small stature should be considered at possible greater risk than adults and this should be stated in the Guidance and training modules11.

14. The review of the Taser Evaluation Forms and the available (legible) FME reports showed no unexpected injuries in over 200 persons subjected to Taser currents. Most of the injuries reported arose from falls (anticipated from the previous DOMILL statements) or were not directly associated with Taser use.

Recommendations

15. Due to the paucity of Taser deployment data against smaller individuals, together with suggestive evidence from limited animal studies, DOMILL recommends that AFOs and members of STUs should be particularly vigilant for any Taser-induced adverse responses in this subset of the population.

16. The Guidance should be amended to identify children and adults of small stature as being at potentially greater risk from the cardiac effects of Taser currents than normal adults of average or large stature.

17. In view of the uncertainties in the population characteristics of the increased numbers of subjects who are likely to be affected by the extended use of the Taser, it is essential that a quarterly review of Taser Evaluations Forms is undertaken by ACPO, DSTL and the Home Office. The acceptability of reversion to annual reporting should be assessed after the first year and DOMILL should be consulted. The Taser Evaluation Forms should identify under which policy authority the Taser was used.

18. DOMILL should be advised immediately in the event of any moderate or serious injuries or adverse physiological responses occurring directly or indirectly from firing of a Taser.

Chairman, DOMILL.

11 DOMILL has been requested by the Northern Ireland Policing Minister to identify essential studies that would enhance DOMILL’s confidence in their developing views on whether children and vulnerable adults are likely to be at greater risk from the adverse effects of Taser, than normal adults.
DSAC Sub-committee on the Medical Implications of Less-lethal Weapons (DOMILL).

Statement on the comparative medical implications of use of the X26 Taser and the M26 Advanced Taser.

Background

1. This statement has been produced by the Defence Scientific Advisory Council (DSAC) sub-committee on the Medical Implications of Less-Lethal Weapons (DOMILL). It provides an independent view for the UK Government on the medical implications of the use of the X26 Taser in the UK, within the policy and guidance of the Association of Chief Police Officers (ACPO). Specifically, this statement compares the predicted principal medical risks associated with the X26 Taser, and the M26 Advanced Taser (referred to subsequently as the M26).

2. On 30th January 2003, the Home Secretary gave authority to proceed with an operational trial of the M26 as a less-lethal option in incidents at which authority to use firearms had been granted. The M26 would be used by police officers already trained in the use of firearms. The operational trial commenced on 21st April 2003 for an initial duration of 12 months. Five police forces took part in the trial, employing a joint policy, operational guidance and training strategy developed by ACPO.

3. Prior to the start of the trial, DOMILL provided an independent statement on the medical implications of the use of the M26 within the ACPO Policy and ACPO Operational Guidance. The statement was based primarily on an assessment of the medical risks undertaken on behalf of DOMILL by the Defence Science and Technology Laboratory (Dstl). The DOMILL statement concluded that: “From the available evidence on the use of the device, the risk of life-threatening or serious injuries from the M26 Advanced Taser appears to be very low.”

4. DOMILL recommended that research be undertaken to clarify the cardiac hazards associated with use of the M26 on individuals who could be considered to be at greater risk of adverse effects. The main thrust of the investigations addressed the possible cardiac hypersusceptibility to M26 currents arising from drugs commonly used illegally in the UK and a review of the vulnerability of pacemakers and other implanted devices.

5. A report on the operational trial of the M26 was produced by PricewaterhouseCoopers. The report concluded that use of the M26 “helped secure a positive outcome to an incident, minimising the potential need for officers to deploy other, possibly more lethal technologies”. ACPO proposed that, subject to a review of the medical assessment and Ministerial approval, the trial should be extended: With Chief Officer agreement, the trial should be extended to all forces for use by existing firearms officers, in situations where an authority for firearms would be granted in accordance with criteria presently laid down within the ACPO Manual of Guidance on the Police Use of Firearms.

6. Consequently, DOMILL issued a second statement subsequent to a review of:

 - revised and reviewed ACPO policy, operational guidance and training;

13 “Use” by ACPO’s definition is the: (i) drawing of a device in circumstances where any person perceives the action as a use of force or a threat of use of force; (ii) discharging the darts at a subject; (iii) application and discharge in “touch stun” mode.
• the outcome of the research addressing the recommendations in their first statement;
• the data presented to them by ACPO on the outcome (to date) of the initial trial then proceeding.

The second statement also concluded that: “The risk of life-threatening or serious injuries from the M26 Taser is very low”.

7. On the basis of the second DOMILL statement and other evidence, the Home Secretary agreed to ACPO’s proposal and the Parliamentary Under Secretary of State at the Home Office (Caroline Flint MP) announced the decision to Parliament in a Written Answer on 15th September 2004. The Home Secretary’s decision applies only to the M26 Advanced Taser.

8. In May 2003, the manufacturers of the M26 introduced another Taser weapon - the X26. ACPO expressed the view that the X26 may have operational benefits over the M26 and requested that the Police Scientific Development Branch (PSDB) conduct a handling trial with users on the X26, similar to the trial undertaken on the M26 before its introduction. Subsequent to the X26 handling trial, in which the X26 showed some potential operational benefits, the Home Office requested that DOMILL prepares this statement on the medical implications of the use of the X26.

Comparison of M26 and X26 Taser outputs

9. The manufacturers claim that the direct incapacitating effect of the X26 is 5% greater than that of the M26. They claim that the X26 is 60% smaller, 60% lighter and consumes one fifth of the power. The electrical pulses from the two weapons have a different shape, magnitude and pulse repetition frequency. The X26 pulse has a lower peak voltage and a longer duration than the M26; it also has a lower pulse repetition frequency.

10. The evidence from the electro-physiological literature is that the threshold for stimulation of excitable tissues reduces as pulse duration is extended, and as the number of pulses is increased. Although the implied reduction in peak current for the X26 would suggest a lower risk of adverse cardiac events from currents that may flow in the heart, the extended duration may offset some of that benefit. Because of the complex shape of the Taser waveforms, the overall effect of this trade-off cannot be assessed from the literature, which has been developed using simple waveforms such as rectangular or sinusoidal pulses.

Technical approach to compare risks from X26 and M26

11. DOMILL requested that Dstl undertake the following modelling and experimental work:

 a. Characterisation and comparison of the electrical output of the X26 and M26 Tasers (in conjunction with PSDB).

 b. A comparison of the currents predicted to flow in the human heart from the M26 and X26 Tasers. This would require the use of a computer model of electromagnetic interactions of applied Taser pulses with the superficial tissues of the body, and the flow of currents to the heart.

15 Taser International Inc. use a rating scale entitled “Muscular Disruption Units”. The M26 is used as the baseline of 100 units. The X26 has 105 units. The rationale and method for determining these values is not stated, but is believed to have been based upon the Taser-induced contractile force in the muscles of a pig limb.

c. Application of the predicted currents to isolated, spontaneously beating hearts to establish the threshold for any potentially adverse effects on cardiac rhythm.

Additionally, DOMILL requested a review of: (i) experimental work undertaken by, or on behalf of the manufacturers to support the introduction of the X26; (ii) operational and training data compiled by the manufacturers and global police forces; (iii) medical assessments undertaken by organisations and individuals unconnected with the manufacturers.

Review of the modelling and experimental work undertaken by Dstl

12. Prediction of Taser currents in the human heart. Computational electromagnetic modelling of M26 and X26 Taser currents flowing in the human heart was achieved using a digital mannequin of the human body, in which the electrical properties of human tissues were represented.

13. Studies on the effect of dart separation on the predicted current density (mA/mm²) flowing in the heart from the M26 showed that a vertical separation of 225 mm, with the upper dart overlying the heart, gave the maximum cardiac current of the scenarios modelled. In this most severe scenario, about 20% of the applied current from the M26 was predicted to pass through the heart during the M26’s 2½ cycle, 50 µs pulse. The peak predicted current density was about 0.66 mA/mm². With regard to the X26, initially about 10% of the applied current from the X26 was predicted to pass through the heart, rising to about 20%. During the X26’s 4 cycle, 160 µs pulse, the peak current predicted was about –0.11 mA/mm².

14. Thus, the model predicted that the peak current density flowing in the human heart from the X26 pulse was about one sixth that of the M26. The current duration of the X26 in the heart was about 3-4 times that of the M26.

Effects of the predicted Taser currents on cardiac rhythm.

15. Method: Excised, spontaneously beating guinea-pig hearts (the Langendorff preparation) were used to determine if the predicted M26 and X26 waveforms in human heart could induce either or both of two phenomena:

- Ventricular ectopic beats (VEBs) – cardiac contractions out with the normal inherent rhythmicity of the heart;

- Ventricular fibrillation (VF) – chaotic, asynchronous contractions of the heart muscle fibres that result in no effective heart output. If uncorrected, this would lead rapidly to death in the human.

16. The modelled cardiac M26 and X26 Taser waveforms were applied to the ventricular outer surface of the isolated hearts. Both the absolute values of the peak currents predicted from the modelling, and higher magnitudes, were applied to determine the thresholds for the two phenomena. Rectangular pulses were also applied to hearts to determine the relationship between current density and pulse duration for a well-characterised, simple waveform, and to ensure that the heart preparations were capable of eliciting VEBs or VF.

17. VEB induction: When applied during the most vulnerable phase of the heart’s electrical cycle (the T-wave of the electrocardiogram) at peak current densities predicted in the human heart during Taser discharge, neither the simulated M26 nor X26 waveforms evoked VEBs.

17 The dart separations modelled were those determined in M26 user trials undertaken by PSDB.
18 The minus term indicates that this was flowing out of the heart (measured at the peak of the second half cycle).
However, VEBs could be elicited by both Taser waveforms by increasing the peak current density of the applied waveforms above those predicted to arise in the human heart. The threshold current density for generation of VEBs for both the M26 and X26 Taser waveforms was greater than 60-fold the modelled current density predicted to occur at the heart, implying a wide safety margin for this particular type of potentially pro-arrhythmic response.

18. **Ventricular fibrillation:** In an attempt to evoke ventricular fibrillation, trains of simulated M26 or X26 Taser waveforms (designed to mimic the discharge patterns of the respective Taser devices) were applied to the ventricular muscle. When the simulated waveforms were applied in this way, neither the M26 nor X26 waveforms elicited ventricular fibrillation at peak current densities up to the maximum output available from the laboratory electrical stimulation system. The threshold peak current density for generation of ventricular fibrillation for the simulated M26 waveform was greater than 70-fold the modelled current density predicted to occur at the heart during Taser discharge. In the case of the simulated X26 waveform, the threshold peak current density was greater than 240-fold the modelled current density. That this failure of the simulated M26 and X26 Taser waveforms to induce ventricular fibrillation was not a function of the biological test system was demonstrated in each experiment by the generation of VF using the rectangular stimulation pulses.

19. **Conclusions:** The results show that the simulated M26 and X26 waveforms, when amplified, are capable of eliciting VEBs, but not VF, when applied to the ventricular muscle of spontaneously beating guinea-pig isolated hearts. The guinea-pig heart is more susceptible than hearts of larger animals (e.g. dog, calf and pig, and presumably human) to VF induced by extrinsic electrical stimulation. The present findings provide indirect evidence for a wide margin of safety in relation to induction of this type of lethal arrhythmia in man. A broadly similar conclusion was reached in a study in the US, in which trains of simulated X26 waveforms of varying intensity, applied across the thorax of anaesthetised pigs, induced ventricular fibrillation only at intensities 15- to 42-fold that of the standard X26 waveform.

20. On the basis of the present study, it is considered unlikely that the electrical discharge from the M26 and X26 Taser devices will influence cardiac rhythmicity by a direct action on the heart of healthy individuals.

21. **Contributing factors to cardiac susceptibility:** The possibility that other factors, such as illicit drug intoxication, alcohol abuse, pre-existing heart disease and cardio active therapeutic drugs may modify the threshold for generation of cardiac arrhythmias cannot be excluded. Similarly, other indirect responses to Taser deployment (e.g. arrhythmias precipitated by stress- or exercise-induced catecholamine release) may, in themselves, predispose to an adverse cardiac outcome independently of the primary (electrical) action of the Taser devices.

22. **DOMILL’s first statement on the M26 Advanced Taser** concluded that (paragraph 28):

 “There is no experimental evidence that the aforementioned pro-arrhythmic factors increase the susceptibility of the heart to low- or high-power Tasers specifically, sufficient to cause an arrhythmic event. Nevertheless, there is sufficient indication from the forensic data and the known electro-physiological characteristics of the heart (and the effects of certain drugs on this) to express a view that excited, intoxicated individuals or those with pre-existing heart disease could be more prone to adverse effects from the M26 Taser, compared to unimpaired individuals. The ACPO Guidance to Users reflects this view.”

Experimental work reported in DOMILL’s second statement on the effects of drugs on cardiac function supported this view. The view expressed above is also applicable to the X26 Taser.

Falls to the ground

23. The claim that the X26 is more effective than the M26 in stimulating skeletal muscle implies that falls following X26 application may be less controlled. This will increase the risk of head injury. It is anticipated therefore that there may be a greater likelihood of head contact with surfaces following use of the X26. Overall, the risk of serious head injury is considered to be low.

Overall conclusion

24. The risk of a life-threatening event arising from the direct interaction of the currents of the X26 Taser with the heart, is less than the already low risk of such an event from the M26 Advanced Taser.

Recommendations

25. The Home Office should continue to provide DOMILL with reports outlining the circumstances of every use of the M26, the post-incident medical assessments undertaken by the Forensic Medical Examiner (FME), and the clinical consequences noted by the FME or clinical staff. This audit should include the X26 Taser if this system is made available for use. DOMILL should be advised as soon as practical of any primary or secondary injury that could be classed as life-threatening, unexpected, or potentially leading to disability.

26. DOMILL should be advised of any changes in:
 a. the specification or performance of the M26 and X26 Taser devices;
 b. the guidance to users and training practices;
 c. the policy and practice of deployment, use and audit.

[signed]

Chairman, DSAC Sub-committee on the Medical Implications of Less-lethal Weapons.
DSAC Sub-committee on the Medical Implications of Less-lethal Weapons (DOMILL)

Second statement on the medical implications of the use of the M26 Advanced Taser (July 2004)

Background

27. The role of the DSAC Sub-committee on the Medical Implications of Less-lethal Weapons (DOMILL) is to provide the Secretary of State for the Home Department and the Secretary of State for Northern Ireland with:

d. Advice on the medical implications of generic classes of less-lethal weapon systems (which includes biophysical, pathological and clinical aspects);

e. Independent statements on the medical implications of use of specific less-lethal systems, when used according to the formal guidance provided to users;

f. Advice on the risk of injury from identified less-lethal systems striking specific areas of the body, in a format that would assist users in making tactical decisions, and developing guidance to users to minimise the risk of injury.

28. On 30 Jan 03, the Home Secretary gave authority to proceed with an operational trial of the M26 Taser as a less-lethal option in incidents at which authority to use firearms had been granted. The M26 Taser would be used by police officers already trained in the use of firearms. The operational trial commenced on 21 Apr 03 for a duration of 12 months. Five police forces are taking part in the trial, employing a joint policy, operational guidance and training strategy developed by the Association of Chief Police Officers (ACPO). The police forces funded an independent evaluation of the trial, undertaken by PricewaterhouseCoopers.

29. Prior to the commencement of the trial, DOMILL provided an independent statement on the medical implications of the use of the M26 Taser within the ACPO Policy and the ACPO Operational Guidance. The statement was based primarily on an assessment of the medical risks undertaken on behalf of DOMILL by the Defence Science and Technology Laboratory (Dstl). The statement is an Annex to this document. DOMILL also produced medical advice notes for the subjects on whom the M26 had been used, hospital staff, and General Practitioners. The DOMILL statement concluded that: “From the available evidence on the use of the device, the risk of life-threatening or serious injuries from the M26 Advanced Taser appears to be very low.”

30. DOMILL recommended that research should be undertaken to clarify the cardiac hazards associated with use of the M26 Taser on individuals who could be considered to have a greater risk of adverse effects. The principal investigations should address the possible cardiac hypersusceptibility to M26 Taser currents arising from drugs commonly used illegally in the UK, acidosis and pre-existing disease, and a more thorough review of the vulnerability of pacemakers and other implanted devices. DOMILL did not consider it essential from a medical perspective that the studies be completed before approval was considered for the initial trial of the M26 Taser under the terms of the ACPO Policy and Guidance. DOMILL also requested that the output of the sighting laser of the M26 Taser should be measured and classified according to British Standards.

Extension of the operational trial of the M26 Taser

31. An interim report on the first five months of the operational trial has been produced by PricewaterhouseCoopers. The interim report concluded that use of the M26 Taser “helped
secure a positive outcome to an incident, minimising the potential need for officers to deploy other, possibly more lethal technologies.”

ACPO has proposed that, subject to a review of the medical assessment and Ministerial support, the trial should be extended thus:

- With Chief Officer agreement, the trial should be extended to all forces for use by existing firearms officers, in situations where an authority for firearms would be granted in accordance with criteria presently laid down within the ACPO Manual of Guidance on the Police Use of Firearms;

- The five forces within the current trial should commence a further trial for 12 months where the deployment of the M26 Taser is extended for use by specialist units at incidents where there is presently no remit to authorise firearms, but where officers are facing violence or threats of violence of such severity that it is likely that they will need to use force to protect themselves or a member of the public.

32. ACPO and the Home Office have requested that DOMILL review the extant medical statement and offer a second statement on the medical implications of use, consequential to:

- Revised and reviewed ACPO policy, operational guidance and training;
- The outcome of the research to date addressing their recommendations in the extant statement;
- The data presented to them by ACPO on the outcome (to date) of the initial trial currently proceeding.

This statement is the outcome of that review.

Review of the research undertaken

33. **Effect of M26 Taser cardiac currents.** The research requested by DOMILL was undertaken by Biomedical Sciences department of Dstl. Dstl adopted a two-fold experimental approach to clarifying the risks of adverse cardiac effects arising from use of the M26 Taser:

 a. **Effect of drugs of abuse on cardiac function.** This approach was predicated on empirical observations made in the United States that many of those involved in confrontations in which Taser was used were under the influence of drugs. The hypothesis tested was that the drugs *per se* could predispose an individual to an adverse cardiac event, irrespective of Taser use. Seven drugs of abuse were tested for their ability to modify the electrical properties of cardiac ventricular conduction tissue in vitro.

 b. **Direct application of electrical pulses to isolated beating hearts.** The pulses represent the current predicted to flow in the heart during discharge of the M26 Taser. The assessment is designed to investigate the effect of the pulses on heart rhythm, the threshold for any effects observed and the effects of selected drugs of abuse upon this threshold. These studies necessitated the development of novel, complex computer models of the interaction of M26 Taser pulses with the human body, in order to predict the shape and magnitude of current flowing in the heart.

34. **Effect of drugs of abuse on cardiac function.** Seven recreational drugs, or their active metabolites, were examined in the sheep isolated cardiac Purkinje fibre preparation. MDMA (Ecstasy) and phencyclidine (PCP) produced effects on the action potential suggestive of an increased risk of development of *torsades de pointes* arrhythmia. Although cocaine, cocaethylene (a psychoactive metabolite formed when cocaine and alcohol are concurrently

25 The assay looked at the effect of drugs on the cardiac action potential (the electrical basis for cardiac conduction, contraction and relaxation) in sheep isolated Purkinje fibres. Prolongation of the action potential duration is thought to be a possible marker for a potentially lethal type of ventricular arrhythmia known as *torsades de pointes*.
abused) and (+)-methamphetamine did not induce action potential prolongation, a critical review of the scientific and clinical literature revealed that these drugs still have the potential to compromise cardiovascular function in a way that could precipitate a life-threatening cardiac event. The clinical literature suggested that morphine (the principal metabolite of heroin) and ∆9-tetrahydrocannabinol (the principal psychoactive component of cannabis) are likely to be relatively benign in terms of cardiovascular toxicity at doses likely to be employed by abusers.

35. The results from the study, together with evidence gleaned from the literature, suggest that some frequently abused drugs have the potential to contribute to any cardiac-related morbidity or mortality that may arise in the context of Taser use. Furthermore, it seems reasonable to assume that this conclusion could be generalised to other emotionally charged and possibly violent confrontations with law enforcement personnel.

36. The adverse cardiac effects produced by any individual drug are likely to be dependent on several risk factors, including dose consumed, co-use with other drugs (including pharmaceutical drugs and ethanol) and pre-existing heart disease. This complex interplay of multiple risk factors could conceivably contribute to any cardiac-related morbidity or mortality associated with Taser use against drug-intoxicated persons. Officers should be aware that the risk of any adverse response in the aftermath of Taser deployment may be higher in drug-impaired individuals and, accordingly, they should be vigilant of any unusual behaviour displayed by the apprehended person that may signal the need for early medical intervention.

37. DOMILL has reviewed the paragraph in its first statement that discussed pro-arrhythmic factors (paragraph 28) and concludes that it does not require modification on the basis of the current work. The current work provides experimental evidence to support the original statement.

38. **Direct application of electrical pulses to isolated beating hearts.** The complex mathematical modelling underpinning the second experimental approach has never been undertaken before and has challenged the limits of current knowledge. Early setbacks with the modelling have been overcome and the quantitative modelling of the M26 Taser current flow in the heart will be completed shortly. This will enable the studies on the isolated beating heart to commence.

39. **Vulnerability of pacemakers and other implantable electronic devices.** The implanted devices examined in the review included cardiac pacemakers, cardioverter defibrillators, cochlear implants and other implantable neurostimulatory devices, such as phrenic and vagal nerve stimulators. Published material on the construction of the devices was consulted to assess the likely consequences of Taser barb impact on the device. An assessment of available published information on the observed interaction of external electromagnetic fields with active implantable devices was also undertaken. The review also addressed the probability of a person wearing an active implantable device being present in a situation where a Taser may be deployed and used; this drew upon a comparison of the age profiles of the frequency of use of pacemaker and implantable cardioverter defibrillator wearers in the UK, and data on the age profile of persons arrested by the police.

40. It was concluded that the probability of direct impact and physical damage to implanted electronic devices was very low. The effects of M26 Taser electrical fields on the function of cardiac pacemakers are unlikely to be permanent. The limited number of studies that have been reported on devices similar to Tasers indicate that effects are likely to be limited to reversion to asynchronous pacing mode, and that these effects are temporary. The effects of Taser output on implantable cardioverter defibrillators are likely to be similar to those on cardiac pacemakers. The nature of the cardiac rhythm sampling process indicates that application of a Taser for a period of 5 seconds is unlikely to result in inappropriate therapy delivery. The effect of Taser outputs on other active implantable devices, such as cochlear implants and nerve stimulators, has not been reported. The interaction with nerve stimulators could produce deleterious effects but the risk of such interaction occurring is low, and it is unlikely that the effects will be long-term or life-threatening.
41. The age profile of cardiac pacemaker recipients is significantly different from the overall population and that of persons arrested in situations where a Taser may be deployed. The probability of an individual wearing a pacemaker being present in such a situation is therefore likely to be considerably lower than the overall incidence of pacemakers in the population.

42. It is concluded that there is no requirement to undertake experimental studies on the vulnerability of active implantable medical devices to the output of the M26 Taser.

Ocular hazard of the laser sight

43. The output of the sighting laser has been tested and is a Class 3R according to the British Standard BS EN 60825-1. Class 3R exceeds the internationally agreed maximum permissible exposure values, but due to the safety factors in these values, devices of this Class are unlikely to cause ocular injuries for accidental exposures. Intentional viewing or deliberate exposure of the eyes of a subject must be avoided.

Overall conclusion

44. The risk of life-threatening or serious injuries from the M26 Taser is very low.

Recommendations

45. DOMILL reaffirms its view that it does not consider it essential from a medical perspective that the experimental studies are completed before approval is considered for the extension of the M26 Taser trial under the terms of the ACPO Guidance. This DOMILL statement will be reviewed when the results of the study on the isolated beating heart are available.

46. The studies by Dstl on the effects of drugs on isolated Purkinje fibres should be published in the medical press.

47. Six months after the commencement of the extended operational trial, the Home Office should provide DOMILL with a report outlining the circumstances of every use of the M26 Taser, the post-incident medical assessments undertaken by the FME, and the clinical consequences noted by the FME or clinical staff. DOMILL should be advised as soon as practical of any primary or secondary injury that could be classed as life-threatening, unexpected, or potentially leading to disability.

48. DOMILL should be advised of any changes in:
 d. the specification or performance of the M26 Taser;
 e. the guidance to users, and training practices;
 f. the policy and practice of deployment, use and audit.

Chairman, DSAC Sub-committee on the Medical Implications of Less-lethal Weapons.
Annex: First DOMILL statement on the medical implications of the use of the M26 Advanced Taser (December 2002)

Background

A1. The role of the DSAC26 Sub-committee on the Medical Implications of Less-lethal Weapons (DOMILL) is to provide the Secretary of State for the Home Department and the Secretary of State for Northern Ireland with:

 c. Advice on the medical implications of generic classes of less-lethal (LL) weapon systems (which includes biophysical, pathological and clinical aspects);

 d. Independent statements on the medical implications of use of specific LL systems, when used according to the formal guidance provided to users;

 e. Advice on the risk of injury from identified LL systems striking specific areas of the body, in a format that would assist users in making tactical decisions, and developing guidance to users to minimise the risk of injury.

A2. This advice is in support of the UK Government’s requirements arising from:

 f. Recommendations 69 and 70 of the Patten report into policing in Northern Ireland27: (i) a research programme to find an acceptable, effective and less potentially lethal alternative to the Baton Round, (ii) provision of a broader range of public-order equipment to the police;

 g. The desire of the Association of Chief Police Officers (ACPO) to have a wider range of options in conflict management scenarios, including those most commonly associated with self-defence and restraint, and the police use of firearms.

In summer 2000, the Secretary of State for Northern Ireland set up a UK-wide inter-departmental Steering Group to co-ordinate a programme to address both requirements.

A3. The report of the Steering Group on Phase 2 of the programme described the various classes of LL weapon systems being evaluated to address the requirements28. The report categorises the technologies according to the requirement for research and evaluation. Within Category A (devices which may be subject to research and evaluation immediately) are electrical incapacitation devices, specifically Tasers.

Evaluation of Tasers

A4. Tasers are hand-held devices that propel two barbs at an individual. The barbs are intended to attach to the skin or clothing on the torso and/or lower limbs. A sequence of very short duration high voltage current pulses passes through wires connecting the device to the barbs. The current flows into the body and results in a loss of muscular control and in pain. Some models also enable direct contact of the Taser hand-set to the surface of an individual; two closely spaced fixed electrodes pass the current pulses into the subject. This manner of application is usually classed as use in "stun" or "probe" mode; pain is the principal local physiological effect.

A5. The Police Scientific Development Branch of the Home Office has undertaken an evaluation of a number of commercially available Taser devices29. The evaluation

26 Defence Scientific Advisory Council.

27 Report of the Independent Commission on Policing in Northern Ireland; September 1999.

29 PSDB Evaluation of Taser Devices. Publication Number 9/02, September 2002.
addressed barb accuracy and dispersion, the measurement of electrical output and reliability, a review of manufacturers' claims and handling characteristics in a number of test scenarios. DOMILL also undertook a general review of the medical implications of the use of Tasers.30,31

A6. On the basis of the objective technical and medical evaluations, and the policy underpinning the development of a broader range of options for conflict management in the UK, ACPO has proposed that an operational trial of the M26 Advanced Taser should take place. DOMILL was invited to provide this current statement for Ministers on the medical implications of the use of the M26 Advanced Taser in an operational trial.

Guidance on use by police of the M26 Advanced Taser

A7. The policy and practice defining the training for use, deployment and operational use of a weapon system is central to an assessment of the medical implications of that use. The ACPO Guidance32 states that an operational trial would be limited to firearms officers in selected police forces. The M26 Advanced Taser would provide firearms officers with additional means of dealing with threats of violence in which conventional firearms and other less-lethal tactical options may be deployed. Such options include batons, sprays of sensory incapacitant, and "empty hand" physical restraint.

A8. Deployment and use of the Taser would conform to the principles of guidance already laid down in the ACPO Manual of Guidance on Police Use of Firearms. The trial would be subjected to critical and independent review.

Technical approach for the assessment of medical implications of use

A9. The milestones placed upon DOMILL by the Steering Group dictated the nature of the technical approach: a wide-ranging review of literature and preliminary analytical studies on the biophysical interaction of Taser current pulses with the body. On behalf of DOMILL, the Defence Science and Technology Laboratory (Dstl) undertook a comprehensive review of information publicly available, and provided by manufacturers and police forces in North America. Over 800 references were acquired and reviewed. The review encompassed:

a. basic neurophysiological science to consider the mechanism of the interaction with excitable tissues;

b. peer-reviewed scientific and medical papers specifically addressing laboratory and operational use of Tasers and stun weapons: electrical output, risks to personnel, analyses of medical issues observed in hospital facilities in individuals subjected to Tasers, and the circumstances surrounding the deaths of personnel subjected to Tasers in the course of their arrest;

c. evidence on the risks provided by manufacturers: scientific, medical, use on volunteers and records of operational use;

d. the basis of the application of electrical safety standards and criteria to Taser outputs;

e. newspaper reports of Taser use and complications arising from use;

f. surveys of effectiveness and injuries observed and recorded by law enforcement agencies in the United States and Canada;

g. peer-reviewed papers on the hazardous effects of electric fields on physiology.

30 The Medical Implications of the Use of Electrical Incapacitation Devices (Tasers). Prepared for DOMILL by the Defence Science and Technology Laboratory. DSTL/CBS/BTP/DOC/594/1.0. April 2002.

The review by Dstl was conducted by cardiac and nerve electrophysiologists, physicists and engineers specialising in the interaction of electrical energy with the body, and trauma specialists.

A10. Dstl also undertook computer-based modelling of the interaction of Taser pulses with the body. The primary purpose was to assess qualitatively the distribution of currents from Tasers in the body, and to determine semi-quantitatively the changes in current magnitude and distribution for different barb separations and Taser outputs.

A11. DOMILL endorsed Dstl’s approach and reviewed the substantial body of information compiled by Dstl. This statement is based on these data.

Classification of Taser outputs

A12. Tasers have been classed by users as "low-power" (5-7 Watt) or “high-power" (14-26 Watt). Tasers have been in use for over 20 years, principally in the US. Over most of this period, only low-power Tasers were available, deployed and used. High-power Tasers have been available and in use on volunteers and operationally for about two years; the M26 Advanced Taser is classed as high-power. Assessments undertaken by the PSDB showed that the principal differences in measured output between low- and high-power Tasers were the pulse repetition rate and pulse duration; differences in peak current and voltage between devices were also noted. Dstl modelling studies showed that the magnetic field strength in the body (an index of current) was greater with the high-power Tasers.

The evidence of hazard and risk from the M26 Advanced Taser

A13. The body of manufacturers’ experimental evidence from biological models of the hazardous and intended effects of Taser on excitable tissues is not substantial, particularly with regard to the M26; the peer-reviewed evidence is even more limited. The epidemiological evidence to assess the hazards associated with use of the M26 Advanced Taser is not as robust as that for the low-power models. However, the manufacturer’s database of over 1600 operational uses of the M26 and reports from law enforcement agencies in North America did offer some insight into the risks and nature of injuries.

Classification of injuries

A14. Unintended adverse effects from the use of Tasers may be classed thus:

- **Primary**: immediate or delayed consequences of electrophysiological phenomena resulting directly from the current flow in the body; it is surmised from the known effects of electric fields and currents on the body (for example, lightning, electric fence controllers) that the organ of principal concern is the heart;

- **Secondary**: physical trauma directly associated with Taser use, principally injuries from the barbs and falls; the head is the principal area at risk;

- **Coincidental**: injuries received in the incident not directly related to Taser use e.g. baton use, self-inflicted wounds, gun-shot wounds.

It is notable that in two surveys from law-enforcement agencies in North America, more than half of the number of people confronted with the M26 Advanced Taser were impaired by alcohol, drugs or mental illness. Some drugs and metabolic consequences of muscular activity are believed to increase the susceptibility of the heart to potentially life-threatening disturbances of rhythm (arrhythmias).
Conclusions

A15. On the basis of the evidence, the following conclusions are offered on the medical implications of the use of the M26 Advanced Taser in an operational trial that may be undertaken within the terms of the ACPO Guidance provided to DOMILL.

A16. **Deaths:** Over the period of use of low-power Tasers, there have been a small number of deaths associated with a large number of operational uses. One paper discusses 16 deaths over a 4 year period in Los Angeles. Other factors such as pre-existing heart disease and drug use were implicated in these reported deaths. On the available evidence, DOMILL considers it extremely unlikely that a death from primary injuries has been caused by a low-power Taser.

A17. With regard to the high-power M26 Advanced Taser, the risk of death from primary injury is low and in common with low-power Tasers, is certainly very much lower than that from conventional firearms. Deaths have been reported to be associated with (but not necessarily caused directly by) use of the M26. DOMILL is not aware of any deaths from primary injuries with this weapon, in both operational and volunteer use in North America.

A18. The confidence of the opinion of a very low risk of death from future use of the M26 is not as high as that for the low-power devices. This uncertainty arises from the smaller numbers of historical operational uses, and the dearth of information on the potentially adverse electrophysiological effects of the higher current flow in the body, particularly in subjects who may have a predisposition to cardiac arrhythmias arising from drug use, pre-existing heart disease or genetic factors.

A19. DOMILL is not aware of any deaths arising from the secondary consequences of Taser use.

A20. **Life-threatening and serious injuries:** The risk of life-threatening injuries and of other serious injuries such as the loss of an eye, is considered to be very low. The intuitive high risk of serious head injury from an uncontrolled collapse is not manifested in practice; most subjects apparently collapse in a semi-controlled manner.

A21. The probability of impact of a barb on the surface of the eye is considered to be low. The impact of barbs on the head has occurred operationally; non-operational evaluation trials on targets have also resulted in head impacts. On the basis of trial data, it is probable that by employing the ACPO Guidance, fewer than 1% of upper barb impacts will hit the head. In the worst case of frontal application, the eyes are a small proportion of the presented area of the head.

A22. The PSDB has shown in trials that the Taser may cause combustion of flammable solvents on the subject's clothing. This may result in serious burns to the torso and head; the Guidance to Users must highlight and control the risk from flammable liquids such as petrol on the subject.

A23. **Other effects:** Falls may result in abrasions, scratches, minor lacerations, swellings and areas of redness on the skin. Minor secondary trauma from the penetration of the skin by the barbs will occur; there is sufficient experience from North America to effect simple removal by UK medical professionals.

A24. Some of the barb penetrations will exhibit small circular burns; areas of skin where current has entered the body from barbs retained in clothing may also exhibit burns. These burns are likely to resolve within a few days, without complications and the need for medical intervention.

A25. DOMILL is not aware of any evidence that the Taser would induce an epileptic seizure.

A26. The M26 Taser has a US laser classification that indicates that it is potentially hazardous for *intrabeam* viewing of its sighting laser. The classification according to British Standards and the potential to cause injury must be determined.

A27. **Use on drug and cardiac-impaired individuals:** It is believed that drugs such as cocaine and pre-existing heart disease may lower the threshold for cardiac arrhythmias. Many of the 16 fatalities associated with use of the low-power Tasers in the Los Angeles survey had also taken PCP (phencyclidine) prior to the incident. PCP is also thought to be pro-arrhythmogenic but is infrequently encountered as a substance of abuse in the UK.

A28. There is no experimental evidence that the aforementioned pro-arrhythmic factors increase the susceptibility of the heart to low- or high-power Tasers specifically, sufficient to cause an arrhythmic event. Nevertheless, there is sufficient indication from the forensic data and the known electrophysiological characteristics of the heart (and the effects of certain drugs on this) to express a view that excited, intoxicated individuals or those with pre-existing heart disease could be more prone to adverse effects from the M26 Taser, compared to unimpaired individuals. The ACPO Guidance to Users reflects this view.

A29. **Overall:** From the available evidence on the use of the device, the risk of life-threatening or serious injuries from the M26 Advanced Taser appears to be very low.

Recommendations

A30. Research should be undertaken to clarify the cardiac hazards associated with use of the Taser on individuals who could be considered to have a greater risk of adverse effects. The principal investigations should address:

a. Accurate, quantitative estimates of the magnitude of the magnetic and electric field strengths from the M26 in potentially vulnerable parts of the body; this would require enhancement of the preliminary model developed by Dstl. These data will focus the investigations in (b) and (c) below;

b. Possible hypersusceptibility to Taser currents arising from drugs commonly abused in the UK, acidosis and pre-existing disease; *in vitro* tissue models are available that could be used to address these issues;

c. The vulnerability of pacemakers and other implanted devices; this issue requires a more thorough review. Experimental studies to assess electromagnetic incompatibility issues are currently not warranted and should await the outcome of the review;

DOMILL does not consider it *essential* from a medical perspective that these studies are completed before approval is considered for the M26 Advanced Taser trial under the terms of the ACPO Guidance.

A31. The output of the sighting laser of the M26 Taser should be measured, classified according to British Standards and operated to reduce the risk from the ocular hazard.

A32. Forensic Medical Examiners (FME) and appropriate clinical staff in the principal hospitals within the areas of the police forces participating in the trial should be briefed on the nature of the M26 Advanced Taser, clinical and operational experience from North America, and the presumed and known risk factors. Additionally, it is recommended that a paper be prepared addressing these issues and the wider policy underpinning use, for submission to an appropriate clinical journal.

A33. At the end of any operational trial (or 6 months after commencement, whichever is earlier), the Home Office should provide DOMILL with a report outlining the circumstances of every use of the M26 Advanced Taser, the post-incident medical assessments undertaken by the FME, and the clinical consequences noted by the FME or clinical staff. DOMILL should be advised as soon as practical of any primary or secondary injury that could be classed as life-threatening, unexpected, or potentially leading to disability.

A34. DOMILL should inspect the M26 Training Programme Manual to advise on the specific medical risk factors declared in the document.

A35. DOMILL should be advised of any changes in:
g. the specification or performance of the M26 Advanced Taser;
h. the guidance to users, and training practices;
i. the policy and practice of deployment, use and audit.

Chairman, DSAC Sub-committee on the Medical Implications of Less-lethal Weapons
You have been subjected to the effects of a Taser. The Taser passed short pulses of electricity into your body. The electricity made your muscles contract (go stiff). You may well have lost balance and fallen to the ground.

The device was used by a specially trained police officer.

During, or shortly after the use of the Taser, you may have experienced some symptoms which may include:

- Being dazed for several minutes;
- Muscle twitches;
- Loss of memory of the event;
- Unsteadiness and a spinning sensation;
- Temporary tingling;
- Weakness in the limbs;
- Local aches and pains and tissue swelling.

These sensations are normal effects of the Taser.

If any of these effects are still present a day later, see a doctor. If you notice any areas of bruising or experienced localised pain anywhere on your body, see a doctor. If you fell and banged your head when the Taser was used, make sure a doctor has seen any injury that may have occurred.

You may have two small marks (like bee stings) in your skin. These are small puncture wounds from the short needles (barbs) used to inject the electricity directly into your skin. The police will ensure that these barbs have been removed by a healthcare professional. There may be small burns similar to sunburn around these marks. These should return to normal in a few days. If they do not and there is pain and swelling, you may have a local infection – see a doctor. If the probes only stuck in your clothing, you may still have two small areas of skin underneath that look sunburned.

There are no known effects of the Taser on the well-being of the unborn child. However, if you are pregnant and have been subjected to a Taser, it is advisable to be reviewed by a doctor or a midwife.
Association of Chief Police Officers – Operational deployment of Taser

Information for GPs and hospital clinicians

Introduction
Tasers are hand-held electronic incapacitation devices that are designed to fire two barbs at an individual. The device is aimed with the intention of embedding the barbs in the clothing or superficial skin on the torso and/or lower limb, but a barb may occasionally embed in an arm or hand. There is also a risk that a barb may penetrate skin in the head or neck region. Rarely, barbs have penetrated eyes and skull, meninges and underlying brain.

The barbs are attached to the Taser handset by thin wires, through which very short duration, high voltage (but low current), pulses pass when the device is actuated. The current flowing into the body is sufficient to induce temporary disruption of voluntary muscle control and intense pain. The Taser may also be used in ‘stun’ or ‘probe’ mode, in which the handset’s electrodes are pressed directly against an individual’s skin or clothing. In stun mode, pain (rather than muscle contraction) is the principal local response because of the narrow separation of the electrodes.

The police use X26 and M26 Tasers, which have been deployed operationally within the UK since 2003 and in use operationally for several years before that in the US and Canada. The X26 is the newest variant of the Taser and is the one most commonly used in the UK.

Use of the Taser in the UK is subject to regular review by an independent panel of clinicians, whose role is to evaluate any adverse medical effects of the Taser, assess their clinical implications, and to provide advice to Government by way of formal, publicly accessible, statements. The panel also assesses how alterations to the specification of a Taser, modifications to officer training, and changes to the way in which the Taser is used operationally, may impact on medical outcome.

The medical implications of Taser use are outlined below.

Classification of injuries
Unintended adverse effects from the use of Tasers are classed as:

- **Primary**: Immediate or delayed consequences of current flow in the body. In addition to the intended effect of painful muscle contraction, there has been speculation that the Taser current may exert effects on cardiac rhythm. No fatalities associated with Taser use have been unequivocally linked to a direct action of the Taser current on the heart.

- **Secondary**: Physical trauma directly associated with Taser use, mainly injuries arising from falls. The head is the region most at risk. Two deaths in the United
States have resulted from fatal head injuries sustained during Taser-induced falls. Mild rhabdomyolysis has been reported. Thoracic vertebral compression fractures have been documented – and such injuries may be primary effects. Pharyngeal perforation, possibly secondary to sudden diaphragm contraction during Taser discharge, has been described.

- **Coincidental**: Injuries not directly attributable to Taser (for example, use of baton or irritant spray, self-inflicted wounds or gunshot wounds).

Life-threatening and serious injuries
Assessment of Taser usage in the US, UK and elsewhere, indicates that, when operated by trained police officers, the risk of life-threatening and other serious injuries, such as the loss of an eye, is very low. Medically significant head injury resulting from uncontrolled falls is rare: standing subjects generally either freeze on the spot or collapse in a semi-controlled manner. However, there have been two US reports of fatal head injuries incurred by Taser-induced falls, and the possibility of head injury should be considered. A number of deaths have been reported in North America during, or after, exposure of subjects to Taser discharge; these deaths have been principally attributed to excess consumption of illicit drugs or to physiological stress imposed by extreme physical activity and restraint, frequently compounded by drug abuse or underlying cardiac disease. No death has yet been unequivocally attributed to the effects of the Taser device alone. However, full clinical assessment is essential particularly in the presence of other factors such as drugs, alcohol, cardiac disease and following violent struggles.

Other effects
Falls may result in abrasions, scratches, minor lacerations, swellings and areas of redness on the skin. Minor secondary trauma from barb penetration of the skin will occur. Some barb penetrations will be associated with small, circular, local burns; these are areas of skin where current has entered the body. Where barbs have embedded in clothing, the underlying skin may also exhibit burns. These burns are likely to resolve within a few days without complications.

There is currently no evidence for any long-term clinical effect attributable to the primary effect of the Taser. Secondary effects, including cataract from orbital penetration and back pain after vertebral compression fractures, have been reported.

Barb removal
In instances where individuals present with barbs embedded in the skin, removal may be achieved by holding the skin taut with one hand and applying gentle in-line traction to the barb shaft with the other. Where available, local guidelines for barb removal should be followed. In the unlikely event that the barbs have embedded in the eye, face or genitalia, appropriate specialist advice should be sought. Barbs extracted from skin should be checked for completeness.

The current injection needles are about 10 mm long and have a 1 mm high barb located about 3 mm from the tip. The trailing wires that conduct the electrical current between the Taser handset and the propelled barbs should have already been cut close to the barb.

Pacemakers and other implanted electronic devices
The evidence concerning damage or disturbance to implanted devices (such as pacemakers) is limited and equivocal – be aware of the potential risk of damage.
Vulnerable populations
Individuals who have been subjected to Taser discharge may have medical problems that will influence the context of their overall clinical management. Tasers have been used to subdue people who would otherwise seriously self-harm, as well as those who are displaying extremes of irrational and violent behaviour towards others. Drug, alcohol or solvent abuse may also be a factor, as are extremes of age and the presence of pre-existing illness such as asthma, diabetes, cardiovascular disease, epilepsy or psychiatric morbidity. Where an individual presenting with one or more of these factors has been transferred to hospital following exposure to Taser discharge, admission for observation may be advisable.

Pregnancy
With the increasing deployment of the Taser in the UK, there is the possibility of an increase in the numbers of pregnant women subjected to Taser discharge. Risks to the fetus are currently thought to be very low – the evidence upon which this assessment is based is continually reviewed.

Further reading

Link to website maintained by US law firm with commercial links to Taser International, Inc: http://www.ecdlaw.info/

Statement by independent panel of clinicians on medical implications of Taser use in UK by authorised firearms officers and specially trained units: [See Appendix B of ACPO Guidance]
The battery use log is to be completed every time the Taser is operated, including the start of duty test.

At the conclusion of seven days use of the Tasers battery set, they are to be replaced by the fresh set, and recharged. The battery charge log should be completed after each recharge.

Taser Number

<table>
<thead>
<tr>
<th>Date</th>
<th>Number of Activations</th>
<th>Running Total</th>
<th>Number of Activations</th>
<th>Running Total</th>
<th>Officer Completing/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix E

M26 Taser Battery Recharging Form

It is essential that this form is completed in order to monitor the recharging of the Taser Battery Packs.

- Each Taser unit is issued with two sets of batteries. One set in the unit, and one spare set.
- Only batteries specified for use in accordance with the manufacturers recommendations should be used.
- The spare battery sets are to be on charge at all times.
- At the conclusion of the 30th recharging the battery sets are to be taken out of operational use and replaced.

Taser Number: ………………………

<table>
<thead>
<tr>
<th>Date</th>
<th>Number of Chargings</th>
<th>Running Total</th>
<th>Number of Chargings</th>
<th>Running Total</th>
<th>Officer Completing</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

44
Taser Use

<table>
<thead>
<tr>
<th>WORK ACTIVITY</th>
<th>HAZARD</th>
<th>RISK (H-M-L)</th>
<th>CONTROL MEASURES REQUIRED</th>
<th>IN PLACE</th>
<th>FURTHER ACTION REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. No</td>
<td>Description</td>
<td>HAZARD</td>
<td>RISK</td>
<td>IN</td>
<td>ACTION REQUIRED</td>
</tr>
<tr>
<td>1.</td>
<td>Taser use</td>
<td>Injury to body from probes. Injury from falling due to incapacitation, ignition of flammable / explosive material by spark. Injury to eyes caused by Taser sighting device.</td>
<td>M</td>
<td>Only trained staff to instruct in the use of Taser, in accordance with the ACPO national Taser training package. Only authorised staff to use operationally.</td>
<td>ACPO training package</td>
</tr>
<tr>
<td>2.</td>
<td>Control of Taser and cartridges</td>
<td>Malfunction of Taser or cartridge – leading to explosion or unexpected discharge.</td>
<td>L</td>
<td>Taser and cartridge to be maintained in accordance with manufacturers instructions and regularly inspected. Taser to be kept pointed in a safe direction. Taser should be kept securely when not in use. Taser and cartridges showing signs of wear or damage should be removed from use.</td>
<td>National Policy on inspection and maintenance</td>
</tr>
<tr>
<td>3</td>
<td>Post discharge - care of subjects</td>
<td>Injury to persons due to probes receiving further pressure against subjects body or by probes being removed and used as a weapon.</td>
<td>M</td>
<td>Persons should be prevented from exerting further pressure towards subject’s body with probes after discharge. Officers have a duty of care to the wellbeing of individuals under their control. Consideration should be given to removing probes at the earliest opportunity to prevent further penetration or probes being removed by subjects and used as a weapon against officers.</td>
<td>ACPO training package</td>
</tr>
</tbody>
</table>
Appendix F

Risk Assessment Taser

Taser Training

<table>
<thead>
<tr>
<th>WORK ACTIVITY</th>
<th>HAZARD</th>
<th>RISK (H-M-L)</th>
<th>CONTROL MEASURES REQUIRED</th>
<th>IN PLACE</th>
<th>FURTHER ACTION REQUIRED</th>
<th>By When</th>
<th>Person Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref. No</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>Taser Training Injury to body from probes. Injury from falling due to incapacitation, ignition of flammable material by spark. Injury to eyes caused by laser sighting device</td>
<td>M</td>
<td>Only trained staff to instruct in the use of Taser, in accordance with the ACPO National Training package.</td>
<td>ACPO Training Package</td>
<td>Review GRA Annually</td>
<td>By senior firearms officer</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Control of Taser and Cartridges Malfunction of Taser or cartridge leading to explosion or unexpected discharge</td>
<td>Taser and cartridge to be maintained in accordance with the manufacturers instructions and regularly inspected. Taser to be kept pointed in a safe direction. Taser and cartridges showing signs of wear or damage should be removed from use.</td>
<td>National Policy on Inspection and Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Tactical training Eye injuries from cartridge discharges at close quarters Injury to eyes caused by laser sighting device.</td>
<td>M</td>
<td>Provide students with suitable eye protection, and require it to be worn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Control of Taser and cartridge during training Risk of being effected by training cartridge (Blue) being mixed with live cartridge (Black and Yellow)</td>
<td>L</td>
<td>Ensure that all live cartridges are removed prior to commencement of training All Tasers to be proved to be unloaded prior to issue of training rounds Student and instructor to visually check rounds are training rounds before issue</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Relevant Health and Safety at Work Legislation.

Health and Safety at work Legislation.

Since 1 July 1998, all police activities have been subject to health and safety at work legislation. This legislation is criminal law and breach of the legislation can result in criminal prosecution by the Health and Safety Executive (HSE) who are the enforcing authority.

The main pieces of health and safety legislation that cover the use of less lethal options are:

- The Health and Safety at Work etc. Act 1974
- The First Aid at Work Regulations 1989
- The Electricity at Work Regulation 1989
- The Personal Protective Equipment (PPE) Regulations 1992
- The Manual Handling Operations Regulations 1999
- The Police Health and Safety Act 1997
- The Provision and Use of Work Equipment Regulations 1998
- The Control of Substances Hazardous to Health (COSHH) Regulations 2002
- The Management of Health and Safety at Work Regulations 1999
- The Pressure Systems Safety Regulations 2000
- Workplace (Health Safety and Welfare) Regulations 1992
- Work at Height Regulations 2005
- Dangerous Substances and Explosive Atmospheres Regulations 2002
- Reporting of Injuries Diseases and Dangerous Occurrences Regulations 1995

All near misses/accidents in the workplace should be reported via force reporting systems.
APPENDIX H - TASER DEPLOYMENT FORM (v10.2 Dec 2009)

For an explanation of requirements and instructions for completing this form refer to page 5

<table>
<thead>
<tr>
<th>SUMMARY: TO BE COMPLETED IN ALL CASES</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORCE</td>
</tr>
<tr>
<td>INCIDENT DATE</td>
</tr>
<tr>
<td>INCIDENT TIME</td>
</tr>
<tr>
<td>INCIDENT NUMBER</td>
</tr>
<tr>
<td>INCIDENT LOCATION POSTCODE</td>
</tr>
<tr>
<td>If postcode unknown - STREET</td>
</tr>
</tbody>
</table>

PLEASE Indicate INCIDENT TYPE
- AFO USE IN AUTHORISED FIREARMS OPERATION
- AFO EXTENDED USE OUTSIDE A FIREARMS OPERATION
- USE BY NON-AFO

TOTAL NUMBER OF TASERS USED IN OPERATION (To include All Officers)

COMPLETION OF THIS FORM RELATES TO THE FOLLOWING USE OF TASER.
Please specify the highest level(s) of use (indicate if both drive stun and firing methods were used):
- Drawn
- Aimed
- Red dot
- Arced
- Complete page 1 only
- Firing
- Drive-Stun mode
- Complete pages 1-4

1. TASER OFFICER DETAILS
If multiple TASER officers present, indicate how many

NAME NUMBER RANK

2. INTENDED SUBJECT CHARACTERISTICS and BEHAVIOUR/THREAT

<table>
<thead>
<tr>
<th>Sex:</th>
<th>Male</th>
<th>Female</th>
<th>please state if animal e.g. dog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age:</td>
<td>Yrs</td>
<td>(Tick if estimate)</td>
<td>DOB:</td>
</tr>
<tr>
<td>Officer defined ethnicity:</td>
<td>Select Ethnicity</td>
<td>(please use Home Office ethnicity classification)</td>
<td></td>
</tr>
<tr>
<td>Height:</td>
<td><5'</td>
<td>5-5'6''</td>
<td>5'6''-6'</td>
</tr>
</tbody>
</table>

Muscular/athletic build
- Yes
- No

Build:
- Light
- Average
- Heavy

Was subject displaying moderator effects?
- Alcohol
- Drugs
- Psychological issues

Was subject threatening any of the following? (tick all that apply)
- Self
- Public
- Police

Was the subject using or threatening to use a weapon of any sort?
- Yes
- No

Weapon classification:
- Select classification
- Details:
 - Select primary perceived e.g. knife against own throat,
 - threat if multiple weapons shotgun in close proximity

3. PRIME TACTICAL PURPOSE

Reason for TASER use (tick all that apply):
- Prevent offence
- Effect arrest
- Prevent escape
- Protect self
- Protect public
- Protect police
- Secure evidence
- Effect search
- Accidental
- Suspected weapon
- Prevent harm
- Remove handcuffs
- Other

Brief Details:
4. TASER CHARACTERISTICS

TASER Variant: X26 [] M26 []

TASER Serial No.: __________

Barb Cartridge Serial No.: __________

5. TASER DISCHARGE DETAILS

Approx. range to subject: ______ M (at time of TASER use)

Subject position: Please select

Subject orientation: Please select

Subject movement: Please select

TASER Drive Stun and Firing

Drive Stun Mode

Application point: Please select

Cartridge status during stun: on [] off []

Did drive-stun subdue subject? Yes [] No []

Repeat application? Yes [] No [] State how many: ______

Why did you opt for the drive stun mode rather than firing?

Firing

Aim point: Please select

How many TASER barbs attached to intended subject?

Both [] One [] None []

Did the TASER barbs contact any person other than the intended subject? Yes [] No [] If yes, complete a separate form

Application contact Points:
please list according to referenced zone on picture

Stun application zones
(please list ALL stuns e.g. 1st = G, 2nd = 7)

If subject was exposed to multiple TASER applications, state the sequence of usage for ALL officers e.g. 1st officer - firing, 2nd officer - drive-stun, 1st - firing

Barb Contact Points:
please list according to referenced zone on picture

Top barb attachment zone e.g. 5 Please select

Bottom barb attachment zone Please select

For additional cartridges used with this TASER go to the end of form

Did TASER function properly? Yes [] No []

5 sec application interrupted? Yes [] No []

Repeat cycle of same cartridge? Yes [] No [] State how many: ______
6. POTENTIAL MODERATORS TO TASER EFFECTIVENESS

The effectiveness of the TASER may vary, depending on a number of factors or behavioural moderators; some are listed below. Please indicate if any of these may have been relevant and indicate whether the presence of this moderator was known to the firer, prior to TASER delivery.

<table>
<thead>
<tr>
<th>ADVERSE EFFECT TYPE</th>
<th>PRIMARY - possibly caused by direct effect of current flow</th>
<th>SECONDARY - as a result of an indirect delivery such as injuries from barbs or falls</th>
<th>COINCIDENTAL - injuries received in the incident not directly related to TASER use e.g. self-inflicted wounds, gunshot wounds, dog bites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse effect description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First aid given? (Select response)</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Ambulance/medic treatment at scene?</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Treatment required in hospital?</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
</tr>
</tbody>
</table>

Barb removal: By whom [Select Person] Location e.g. scene [Select location]

Subject detained in custody: [Yes] [No]

Referral to FME during custody: [Yes] [No]

Referral to hospital during custody: [Yes] [No]

Medical Evaluation of subject conducted in custody: [Yes] [No]

Identify any countermeasures which were used by the subject to modify the intended physical effect of the TASER:

7. CONSEQUENCE MANAGEMENT

Please indicate the nature of all observable injuries sustained during the incident and provide details. We are aware that police officers are not professional medical practitioners, but their observations provide a valuable indicator for assessments made by an independent medical panel:

<table>
<thead>
<tr>
<th>ADVERSE EFFECT TYPE</th>
<th>PRIMARY - possibly caused by direct effect of current flow</th>
<th>SECONDARY - as a result of an indirect delivery such as injuries from barbs or falls</th>
<th>COINCIDENTAL - injuries received in the incident not directly related to TASER use e.g. self-inflicted wounds, gunshot wounds, dog bites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adverse effect description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First aid given? (Select response)</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Ambulance/medic treatment at scene?</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
</tr>
<tr>
<td>Treatment required in hospital?</td>
<td>Yes/No</td>
<td>Yes/No</td>
<td>Yes/No</td>
</tr>
</tbody>
</table>
8. SUMMARY OF OPERATION FROM COMMENCEMENT TO RESOLUTION.

To be completed when TASER has been fired or used in drive-stun mode (this will be used as a basis for a brief to all forces and is **MANDATORY**). This is not provided for evidential purposes (see officer’s statement) but is subject to the rules of disclosure. Incomplete forms cannot be accepted and will be returned. Please complete following The Conflict Management Model.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Information/Intelligence:</td>
<td></td>
</tr>
<tr>
<td>2. Threat Assessment:</td>
<td></td>
</tr>
<tr>
<td>3. Powers/Policy</td>
<td></td>
</tr>
<tr>
<td>4. Options (tactical) considered:</td>
<td></td>
</tr>
<tr>
<td>5. Actions Taken:</td>
<td></td>
</tr>
</tbody>
</table>

Force Medical Examiner Report(s) attached?
- [] Yes
- [] No

ATTACH FME REPORT TO THIS FORM
Successful TASER Firings/Drive Stuns require the completion of a Force Medical Examination Form – THIS WILL NEED TO BE OBTAINED IN ALL CASES. If not obtained, please provide explanation:
Officers should email the completed form and FME report to their force TASER Liaison Officer who will forward to the relevant organisation for collation:

ACPO Firearms … acpo_firearms.cos.hq@westmercia.pnn.police.uk
HOSDB taserforms@homeoffice.gsi.gov.uk
ACPO SDAR.......... sdar.taser@met.police.uk

ALL forms MUST go to HOSDB, preferably with download data in cases of firings and stun mode uses. In addition All forms resulting from a firearms operation should be sent to ACPO Firearms. Taser use by firearms officers outside of a firearms operation and by specially trained officers should be sent to ACPO SDAR.

REQUIREMENT

- The purpose of this form is to gather research information about the operational effectiveness of the TASER system and any medical implications of its use.
- The questions specifically relate to the operational environment and the responses of the individual hit by the TASER
- The data is required to enable regular operational use audits and evaluations to ensure that any emerging issues are properly reflected in TASER training and guidance, as recommended by ACPO and DOMILL

INSTRUCTIONS

1. This form is to be completed following all incidents where a TASER is used. This refers to a TASER being drawn, aimed, red dotted, arced, drive-stunned or fired.
2. If a TASER is used by more than one officer at any given incident, a separate form is required for each officer.
3. If a TASER is used on more than one SUBJECT by any individual officer, a separate form is required for each individual targeted.

1 DSAC Sub-Committee on the Medical Implications of Less-Lethal Weapons (DOMILL): Statement on the medical implications of M26 and X26 TASER use at incidents where firearms authority has not been granted (May 2007)

OFFICERS COMPLETING THIS FORM SHOULD EMAIL FORMS AND FORCE MEDICAL EXAMINERS FORMS TO APPROPRIATE FORCE TASER LIAISON OFFICERS WHO WILL REFER TO ACPO & HOSDB.
Additional Taser cartridge discharge details:
Please complete for all additional cartridges used with this Taser.

2nd cartridge details:
Approx. range to intended subject: __________
Subject position: Please select
Subject orientation: Please select
Subject movement: Please select
Barb Cartridge Serial No. __________
Aim point Please select
How many TASER barbs attached to intended subject?
Both ☐ One ☐ None ☐
Did the TASER barbs contact any person other than the intended subject?
Yes ☐ No ☐ If yes, complete a separate form
If TASER discharge failed to subdue subject, please state reason why.
Contact Points:
Top barb attachment zone e.g. 5 Please select
Bottom barb attachment zone Please select
Did TASER function properly?
Yes ☐ No ☐
5 sec application interrupted?
Yes ☐ No ☐
Repeat cycle of same cartridge?
Yes ☐ No ☐ State how many: __________

3rd cartridge details:
Approx. range to intended subject: __________
Subject position: Please select
Subject orientation: Please select
Subject movement: Please select
Barb Cartridge Serial No. __________
Aim point Please select
How many TASER barbs attached to intended subject?
Both ☐ One ☐ None ☐
Did the TASER barbs contact any person other than the intended subject?
Yes ☐ No ☐ If yes, complete a separate form
If TASER discharge failed to subdue subject, please state reason why.
Contact Points:
Top barb attachment zone e.g. 5 Please select
Bottom barb attachment zone Please select
Did TASER function properly?
Yes ☐ No ☐
5 sec application interrupted?
Yes ☐ No ☐
Repeat cycle of same cartridge?
Yes ☐ No ☐ State how many: __________

For additional cartridges please continue on a separate sheet.